Spinach library
Spinach is a fast (polynomial complexity scaling for liquid state NMR) opensource spin dynamics simulation library that supports NMR, EPR, DNP, MAS, Optimal Control, PHIP, singlet state NMR and other forms of Magnetic Resonance spectroscopy. Spinach history and capabilities are summarized in the 2013 EPR Newsletter.
Downloads:
Version 1.7.2996 (latest version, 10 Jan 2016, documentation)
Version 1.6.2782
Version 1.5.2440
Version 1.4.2114
Please email Ilya Kuprov with any questions, feature requests or systems to simulate. The minimum supported version of Matlab is 2015a (64bit version) with Parallel Computing Toolbox and at least 8 GB of RAM. Spinach supports largescale (128+ cores) parallel deployments using Matlab Distributed Computing Server. Protein functionality requires at least 256 GB of RAM.
New features in version 1.7.2996
 Detailed documentation wiki site.
 Standalone LevanteErnst thermalizer for relaxation superoperators.
 Major efficiency improvements in the pseudocontact shift module when dealing with nonpoint unpaired electrons.
 Floquet theory and FokkerPlanck theory (for single and double rotation solid state NMR) added as kernel contexts.
 Tensor train matrix by full vector multiplication function added to the tensor train module (collaboration with Sergey Dolgov and Dmitry Savostyanov).
 A standalone Krylov propagation module with an option to run on GPU.
 Improved support for NVidia Tesla cards, propagator caching and memory management as well as assorted efficiency improvements and bug fixes throughout the code.
 Shaped pulse functions in frequencyamplitudetime coordinates using FokkerPlanck formalism, including situations where gradients are present (collaboration with Gareth Morris).
 Three and fourpulse DEER sequences, pulseacquire and Davies ENDOR sequence using orientationselective soft pulses (collaboration with Nurit Manukovsky and Daniella Goldfarb).
 Timedomain hardpulse HYSCORE sequence (collaboration with Luke Edwards).
 Quadrupolar overtone crosspolarization simulation examples (collaboration with Marina Carravetta).
 Basic 1D, 2D and 3D imaging infrastructure with gradients, diffusion (both finite difference and Fourier derivative operators), flow and quantum mechanical treatment of spin dynamics using FokkerPlanck formalism (collaboration with JeanNicolas Dumez).
 ROESY pulse sequence with ideal spinlock in the NMR module (collaboration with Christina Thiele, Barbara Odell and Tim Claridge).
 DNP field scan simulations supporting electrons of any spin, including gadolinium examples (collaboration with Bjorn Corzilius).
 An efficient gadolinium ZFS parameter distribution integrator (collaboration with Nurit Manukovsky and Daniella Goldfarb).
 Initial concentrations for the kinetics module can now be specified as input parameters rather than manually in the initial state.
 Spin system energy level population profiling function.
 Analytical standard results (in Mathematica) for the relaxation theory module in the example set.
New features in version 1.6.2782
 BFGSKrotov and regularized NewtonRaphson GRAPE algorithms in the Optimal Control module (written by David Goodwin). Standalone direct and inverted BFGS and SR1 Hessian update modules.
 Oneangle Lebedev and REPULSION grids, hemisphere and octant subsets for REPULSION grids.
 Augmented exponential functions for the calculation of matrix exponential derivatives and chained integrals involving matrix exponentials (a collaboration with David Goodwin).
 Generalized rotating frame transformation module permitting arbitrary order perturbation theory corrections to rotating frame transformations.
 Chemical kinetics module now supports networks of first order chemical reactions as well as pointtopoint coherence fluxes within a fixed spin system.
 Sparse matrix exponentiation module takes advantage of sparse GPU algebra (NVidia cards only) in the forthcoming Matlab R2015b. An order of magnitude acceleration is observed for some solid state NMR simulations. The module also now uses a hash table based caching algorithm to avoid recalculation of exponentials of previously encountered matrices. Standalone matrix hashing module added.
 Interactive 2D spectral integration and slicing functions are now available, along with basic streak removal functionality.
 Support for doublerotation solid state NMR and doublerotation overtone NMR using FokkerPlanck formalism (collaboration with Marina Carravetta).
 New spectral fitting examples, including simultaneous multispectral fits (collaboration with Bruno Linclau, Giuseppe Pileio and Malcolm Levitt).
 Symmetry factorization module now supports Hilbert space Hamiltonians.
 Experimental support for 3D spatial diffusion and tripleaxis gradient experiments using direct products of spin and spatial degrees of freedom. Examples of 1D images, 1D diffusion NMR and ultrafast COSY experiments (collaboration with JeanNicolas Dumez).
 Multiple new auxiliary functions that streamline commonly occurring transformations and notation translations.
 Auxiliary matrix based chemical yield integration algorithm implemented into the Spin Chemistry modules.
 Outofphase ESEEM sequence added to the ESR pulse sequences.
New features in version 1.5.2440
 Improved Jcoupling estimation in the protein NMR module (collaboration with Zenawi Welderufael).
 Native Tensor Train / DMRG module (collaboration with Dmitri Savostyanov and Sergey Dolgov).
 Explicit numerical gradient and gradient sandwich functions with integration over the sample volume performed using auxiliary matrix methods (collaboration with Luke Edwards).
 Periodic boundary conditions for the calculation of dipolar couplings in solid state NMR spectroscopy.
 Two and threeangle REPULSION grids and an implementation of SHREWD method for spherical integration grid weight assignment (collaboration with Hamid Khan and Malcolm Levitt).
 Powerful new PCS module, supporting calculation of hyperfine and pseudocontact shifts using point and distributed electron formalisms, as well as extraction of electron probability distributions from experimental PCS data. The module also includes a volumetric plotter function for 3D scalar fields.
 A streamlined chemical kinetics module, supporting EXSY calculations on whole proteins (collaboration with Joern Werner).
 Major efficiency improvements in the calculation of Redfield relaxation superoperators, 2D and 3D NMR experiments on proteins.
 Support for spin0 particles that makes it convenient to simulate molecules with sitespecific isotope substitution.
 Significant expansion of DEER simulation functionality and several new examples (collaboration with Nurit Manukovsky and Daniella Goldfarb).
 Examples of spectral fitting using Spinach (collaboration with Bruno Linclau).
 Examples of quadrupolar overtone NMR simulations using Spinach (collaboration with Marina Carravetta and Phil Williamson).
New features in version 1.4.2114
 Major efficiency, memory management and parallelization improvements throughout the code, particularly in the protein NMR module.
 Rotor frame option for the Floquet theory module.
 Protein Jcoupling prediction module, based on graphtheoretical analysis of bonding patterns and a database of Karplus curves.
 Scalar relaxation of the first kind is now available in the relaxation theory module.
 Major expansion of the input validation code: all error messages in all functions are now clear and informative.
 A large number of new example files, including an example simulation illustrating the presence of longlived states in quadrupolar systems.
New features in version 1.3.1980
 Zeeman basis set support in Hilbert, Liouville and FokkerPlanck spaces.
 Experimental support for Tensor Train (aka DMRG, aka MPS) formalism via TT Toolbox (which should be downloaded separately from the developers' web site). This work is a collaboration with Ivan Oseledets, Dmitry Savostyanov and Sergey Dolgov. Hilbert space, Liouville space and FokkerPlanck space simulations are supported.
 Protein 3D NMR experiments (HNCO, HNCOCA) and 3D contour plotting utility. On sufficiently powerful hardware (256 GB of RAM is a minimum) Spinach can now run liquidstate protein NMR simulations, including Redfield relaxation theory. Ubiquitin is supplied as an example (kindly provided by Griesinger group and BMRB).
 Floquet theory module, supporting magic angle spinning calculations around a userspecified axis. Two and threeangle spherical grid averaging options in rotor frame and magnet frame respectively. This module has mostly been developed by Luke Edwards.
 Infinite order average Hamiltonian theory option (via matrix logarithms) in the average Hamiltonian theory module.
 Weizmann DNP option in the relaxation theory module (collaboration with Shimon Vega, Akiva Feintuch and Yonatan Hovav).
 Scalar relaxation of the second kind option in the relaxation superoperator module.
 Parallel construction of elementary operators and Hamiltonians.
 Parallel propagation with respect to independently evolving subspaces in the evolution module.
 Additional spherical quadrature grids: threeangle GSQ set, twoangle icosahedral set.
 Much faster implementation of the Zero Track Elimination algorithm.
 Infrastructure and examples for quadrupolar overtone NMR spectroscopy (collaboration with Phil Williamson and Marina Carravetta).
 Brute force stochastic integration version of BlochRedfieldWangsness theory in the relaxation superoperator module.
 Import of quadrupolar and spinrotation tensors from Gaussian03/09 logs.
 Much richer feedback and reporting throughout the code.
 Spherical tensor operator norms aligned with mainstream literature conventions.
 Large number of additional example simulation files.
New features in version 1.2.1437
 Solid Effect, Cross Effect and Overhauser DNP effect simulation (collaboration with Alexander Karabanov and Walter Kockenberger at Nottingham University). Multiple example files reproducing published literature results.
 Krotov method and ZhuRabitz method as well as several new penalty functionals for the BFGSGRAPE method in the Optimal Control module. BFGSGRAPE method now uses an inhouse implementation of LBFGS. GRAPE derivatives are now calculated using auxiliary matrix techniques.
 Lindblad superoperator option and Nottingham DNP option in the relaxation theory module.
 Average Hamiltonian theory module supporting Waugh and KrylovBogolyubov theories up to third order.
 Spin system trajectory analysis module supporting correlation order, coherence order, spin population and spin participation binning as well as trajectory similarity analysis.
 Generalized FokkerPlanck modules in the kernel supporting SLE and MAS calculations.
 Hyperfine tensor and chemical shielding tensor visualization from Gaussian09 GIAO/CSGT log files using ellipsoid plots.
 GPGPU implementation of the matrix exponential function with an automatic switchover to CPU processing if the card memory is low.
 PASADENA, ALTADENA and SABRE parahydrogenation simulation example files.
 Extra assumption sets for the Hamiltonian superoperator function.
 Most Spinach algorithms are now taking full advantage of parallel processing on multicore machines and Matlab clusters.
 Huge amounts of additional documentation (in the headers) and input validation (in the footers) of each function. Console output has been made more detailed and informative.
New features in version 1.2.1217
 Stochastic
Liouville Equation formalism is now supported for isotropic, axial and rhombic
rotational diffusion.
 Operator
generation can now use 'electrons' and 'nuclei' as spin specifications.
 Powder
averages have been abstracted, generalized and parallelized. It is no longer
necessary to do powder averaging manually.
 Spherical
averaging grid files now include tessellation information.
 DEC
(“direct expectations via Chebyshev method”) algorithm is now supported in the
evolution module.
 Automatic
treatment of dilute isotopes.
 Tikhonov
regularization is now available in the Optimal Control module.
 DEER
(double electronelectron resonance) is now supported as a pulse sequence.
 Newton
series are now supported as a method of matrix exponentiation in the propagator
calculation module.
 Many
infrastructure functions have been parallelized and optimized (in both
efficiency and memory footprint) for largescale simulations.
 LevittDiBari
thermalization has been implemented into the relaxation theory module.
 Further
examples were added for Spinach modules and procedures as well as extensive
documentation in the header of each kernel function and pulse sequence.
Spinach features, version 1.1.1054
 Provides lowdimensional matrix representations for spin operators in large spin systems and enables time domain simulation of NMR and ESR experiments on systems previously considered too big for any practical calculations. All standard techniques of NMR/ESR simulations remain the same in reduced state spaces, the only difference is smaller matrices. The details of the state space restriction method used by Spinach are presented in this paper.
 Includes a generalized symmetry module (any number of groups of equivalent spins of any quantum number).
 Includes Krylov subspace based time propagation functions and onthefly dimension reduction tools that operate transparently to the user and ensure rockbottom CPU and memory requirements in all simulation tasks.
 Includes a generalized rotation module that outputs the full rotation basis and the associated Wigner functions, returns Liouvillians for userspecified spin system orientations, provides a Lebedev powder integrator and rotational correlation functions for isotropic, axial and rhombic rotational diffusion.
 Includes a generalized relaxation theory module: complete Redfield superoperators for all known first and secondrank interactions with all crosscorrelations thereof), supporting all types of magnetic resonance spectroscopy: NMR, ESR, DNP, Spin Chemistry, etc. Anisotropic rotational diffusion tensors are supported in full generailty.
 Includes an analytical derivatives module, supporting derivative superoperators and derivative propagators.
 Includes an Optimal Control waveform design module using BFGSGRAPE algorithm with exact gradients. Optimization of broadband pulses, selective pulses and universal rotations is implemented in both Cartesian and phaseamplitude coordinates. For phasemodulated pulses, userspecified amplitude envelopes are available. Userspecified waveform basis sets are supported. Template files are included for common Optimal Control optimization tasks.
 Supports pseudocontact shifts generated by a point paramagnetic metal centre.
 Includes templates for Overhauser DNP calculations in liquid state and solid effect DNP calculations in solid state using KrylovBogolyubov averaging in a reduced state space.
 Includes functions for multigrid parallel soft pulses, coherence selection and decoupling.
 Includes functions for the simulation of magnetochemical experiments (a collaboration with Hannah Hogben and Peter Hore at Oxford).
 Includes functions for the simulation of common NMR (pulseacquire, COSY, DQFCOSY, HSQC, CLIPHSQC, HMQC, HETCOR) and ESR (pulseacquire, ENDOR, ESEEM) experiments.
 Includes functions for the simulation of partially aligned systems  RDCs, residual CSAs and residual quadrupolar interactions are supported in full generality.
We are in the process of adding DMRG/MPS functionality, coding up a stochastic Liouville equation module and expanding the library of standard pulse sequences and waveforms. The code is extensively commented and designed to be very readable.
Publications describing Spinach features
Acknowledgements
The authors are very grateful to Mark Butler, JeanNicolas Dumez, Lyndon Emsley, Jack Freed, Steffen Glaser, Jeff Harmer, Paul Hodgkinson, Alexej Jerschow, Alexander Karabanov, Walter Köckenberger, Christiane Koch, Malcolm Levitt, Frederic MentinkVigier, Niels Chr. Nielsen, Konstantin Pervushin, Chris Rodgers, Sophie Schirmer, Thomas SchulteHerbrüggen, Stefan Stoll, Zdenek Tosner and Shimon Vega for many useful discussions and feedback. The project is funded by the EPSRC (EP/F065205/1, EP/H003789/1).
