Week 6 workshop exercises

1. Find general solutions for the following differential equations:

 (a) \(\frac{dy}{dx} = \frac{3x^2}{y} \)

 (b) \(\frac{dy}{dx} = 4xy^2 \)

 (c) \(\frac{dx}{dt} = 2(x+1)t \)

2. Solve the initial value problems for the following ODEs:

 (a) \(\frac{dy}{dx} = \frac{y+1}{x-3}, \quad y(0) = 1 \)

 (b) \(\frac{dy}{dx} = \frac{x^2-1}{2y+1}, \quad y(0) = -1 \)

 Note: in part (b), the quadratic equation for \(y \) may be left unsolved.

3. Find the interval \(\tau_{1/2} \) in which the amount of reactant \(A \) in a first order decay process

 \[A(t) = A(0)e^{-kt} \]

 is reduced by a factor of 2.

4. The following function was proposed as an approximation to \(\cos(x) \) around \(x = 0 \):

 \[f(x) = 1 - \frac{115x^2}{252} + \frac{313x^4}{15120} + \frac{11x^2}{252} + \frac{13x^4}{15120} \]

 Using a calculator, inspect the performance of this approximation (a) at the origin; (b) in the interval between \(-\pi/2\) and \(+\pi/2\); (c) around \(x = 2\pi \); (d) at infinity. The easiest way to proceed is to pick a grid of \(x \) points, and to compare the values of the function and the approximation at those points.

5. Using the substitution \(x = kT/\Delta E \), demonstrate (by calculating the function for a few values of \(x \), or by carefully plotting both functions) that the following expression

 \[Q(T) = \frac{1}{2} + \frac{kT}{\Delta E} + \frac{\Delta E}{12kT} \]

 can be an excellent approximation to the partition function of the ensemble of harmonic oscillators

 \[Q(T) = \frac{1}{1 - e^{-\Delta E/kT}} \]

 Use your calculator to estimate the interval of \(kT/\Delta E \) for which the approximation is good (you would first need to decide what is to be considered “good”).

6. Show that a differential equation of the form

 \(\frac{dy}{dx} = f(ax + by + c) \)

 where \(a, b, c \) are constants, is reduced to a separable form by the substitution \(u = ax + by \). Proceed by calculating the differential \(du \) and using the result to eliminate \(dy \) from the numerator.