Week 7 workshop exercises

1. Calculate the first six terms of the Taylor series around \(x_0 = 0 \) for the following functions:

 \[
 \begin{align*}
 (a) \quad & \frac{1}{1 - 3x} \\
 (b) \quad & \frac{1}{1 + 5x^2} \text{ (think first)} \\
 (c) \quad & \frac{1}{2 + x}
 \end{align*}
 \]

 and use the ratio test to find the values of \(x \) for which the series converge.

2. Find the linear high-temperature approximation for the Fermi-Dirac distribution that describes the average number of fermions \(n \) in a single-particle state with the energy \(U \) in a system with the total chemical potential \(\mu \):

 \[n(T) = \frac{1}{e^{(U-\mu)/kT} + 1}\]

 Note: make a substitution \(x = (U - \mu)/kT \), get the Taylor series up to the linear term around \(x = 0 \), then reverse the substitution.

3. Find the radius of convergence for each of the following series:

 \[
 \begin{align*}
 (a) \quad & \sum_{m=0}^{\infty} \frac{x^m}{4^m} \\
 (b) \quad & \sum_{r=0}^{\infty} (-1)^r x^{2r} \\
 (c) \quad & \sum_{n=1}^{\infty} nx^n \\
 (d) \quad & \sum_{n=1}^{\infty} \frac{x^n}{n^2}
 \end{align*}
 \]

4. The following are the Taylor series for sine and cosine:

 \[
 \begin{align*}
 \sin x &= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \\
 \cos x &= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}
 \end{align*}
 \]

 (a) write out the first four terms of each series explicitly;

 (b) differentiate the explicit expression for the sine series and demonstrate that the derivative is equal to the cosine series;

 (b) integrate the explicit expression for the sine series and demonstrate that the integral is equal to the negative of the cosine series plus a constant.

5. Find the Lagrange interpolant for the function taking the following values: \(f(0) = 0, f(1) = 1, f(2) = 1, f(3) = 2 \). Calculate the value of the interpolant at \(x = 3/2 \).