CHEM1047 – Week 5 Lecture 2 – Differentials

The differential is a generalisation of the notion of small increment. In the discussion so far, we were working with finite increments (e.g. Δf and Δx) or with limit expressions in which those increments vanished after the limit was taken. Differential expressions combine those methods: dx stands for an increment of x that is infinitesimally small.

1. Formal definition of the differential

In mathematics, the differential is formally defined as the limit of a small increment:

\[
\begin{align*}
 f(x + \Delta x) &= f'(x) + f''(x) \Delta x - \varphi(x, \Delta x) \Delta x \\
 f(x + \Delta x) - f(x) &= f'(x) \Delta x - \varphi(x, \Delta x) \Delta x \\
 \Delta f &= f''(x) \Delta x - \varphi(x, \Delta x) \Delta x \\
 df &= f'(x) \, dx
\end{align*}
\]

Differential expressions are more compact and convenient than the expressions involving limits of finite increments. Equation (1) also clarifies the origin of Leibniz’s notation for the derivative:

\[
df = f'(x) \, dx \quad \Rightarrow \quad \frac{df}{dx} = f'(x)
\]

Differentials will appear naturally in the construction of the definite integral where they correspond to infinitesimally small area or volume elements that the integral is adding up. The differential of a function may also be viewed as its local linear approximation.

2. Properties of differentials

The properties follow from the corresponding derivative properties. For sums and multiples:

\[
d[f + g] = df + dg, \quad d[\alpha f] = \alpha df
\]

where α is a constant. For products and fractions:

\[
d[fg] = fdg + gdf, \quad d\left[\frac{f}{g}\right] = \frac{fdg - gdf}{g^2}
\]

Here, d is not a variable or a function, but a differential operator – an instruction to compute the differential of whatever appears in front.

Differential notation is powerful – the chain rule that has taken a page of limit expressions a few lectures ago can now be derived in one line:

\[
df = f'(g) \, dg, \quad dg = g'(x) \, dx \quad \Rightarrow \quad d\left[f\left(g(x)\right)\right] = f'(g(x))g'(x) \, dx
\]
\[y = f(x) \quad \Rightarrow \quad \frac{dy}{dx} = f'(x) \]
\[x = f^{-1}(y) \quad \Rightarrow \quad \frac{dx}{dy} = \left(\frac{dy}{dx} \right)^{-1} = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))} \quad (6) \]

Example 1: calculate the differential of \(\exp(-x^2/2) \).

Solution: from the definition in Equation (2)
\[d \left[\exp(-x^2/2) \right] = \exp(-x^2/2) d \left(-x^2/2 \right) = -x \exp(-x^2/2) dx \]

Example 2: if \(\frac{df}{dx} = \cos x \) and \(x = t^3 \), derive the expression for \(\frac{df}{dt} \).

Solution: we can calculate \(dx \) and replace it
\[dx = 3t^2 dt \quad \Rightarrow \quad \frac{df}{dx} = \frac{df}{3t^2 dt} = \cos(t^3) \quad \Rightarrow \quad \frac{df}{dt} = 3t^2 \cos(t^3) \]

Example 3: given that \(y = a \sin x \), calculate \(dx/dy \).

Solution: we can use the fact that \(dx/dy \) can be interpreted as a ratio of the two differentials
\[y = a \sin(x) \quad \Rightarrow \quad \frac{dy}{dx} = a \cos(x) \quad \Rightarrow \quad \frac{dx}{dy} = \frac{1}{a \cos(x)} \]
\[\frac{dx}{dy} = \frac{1}{a \sqrt{1 - \sin^2(x)}} = \frac{1}{a \sqrt{1 - y^2/a^2}} = \frac{1}{\sqrt{a^2 - y^2}} \]

3. Differentials of multivariate functions

Multivariate functions change value if any of their arguments changes. The expression for the differential of a multivariate function therefore is:
\[df(x, y, z, ...) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz + ... \quad (7) \]

A subtle point here is that not every expression of the form
\[[...] dx + [...] dy + [...] dz + ... \quad (8) \]

is a differential of a well-behaved function because mixed second derivatives must be equal, e.g.:
\[\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \quad (9) \]

A differential that satisfies this property is called an exact differential. Such differentials are important in thermodynamics because their integrals are path-independent. To find out if a particular expression is an exact differential, one must compare mixed second derivatives, for example:
Here, $g(x, y)$ and $h(x, y)$ are already first partial derivatives of something – see Equation (7) – and therefore only one further derivative, with respect to the other variable, needs to be calculated.

Mixed derivative relations are useful in thermodynamics. Consider the full differential of enthalpy:

$$ H = U + PV \quad dH = dU + PdV + VdP $$

From the second law of thermodynamics $dU = TdS - PdV$, and therefore

$$ dH = TdS + VdP $$

For this to be an exact differential, we must have:

$$ \frac{\partial T(P, S)}{\partial P} = \frac{\partial V(P, S)}{\partial S} $$

Such relations are called Maxwell’s relations.

Example 4: calculate the differential of $f(x, y) = x \sin y$.

Solution: from the definition

$$ df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = \frac{\partial}{\partial x} (x \sin y) dx + \frac{\partial}{\partial y} (x \sin y) dy = \sin(y) dx + x \cos(y) dy $$

Example 5: find out if $(x^2 - y^2) dx + 2xydy$ is an exact differential.

Solution: calculating mixed derivatives yields

$$ \frac{\partial}{\partial y} (x^2 - y^2) = -2y \quad \frac{\partial}{\partial x} (2xy) = 2y $$

The derivatives are not equal, and therefore the differential is not exact.