CHEM1033 - Week 7 Lecture - Transcendental equations
Sections 3.1-3.4, 3.6-3.9 of Steiner, "The Chemistry Maths Book", 2™ edition.
Chapters 12 and 16 of Monk and Munro, "Maths for Chemistry", 2" edition.

1. Number fields
There are many types of numbers in mathematics: integers, rational numbers, real numbers, etc. They
share some features and provide a good example of formal definitions, as well as notation that is often

used in modern physical sciences. In formal mathematics, a field is defined as a set [ with two operations,

called addition ("+") and multiplication ("-"), that satisfy the following properties:

1. T isclosed under addition and multiplication:
Va,beF, a+belF and a-belF

This should be read in the following way: "for any elements @ and b belonging to IF, their

sum and their product also belong to I ".

2. Addition and multiplication operations are associative:

va,b,ceF (a+b)+c=a+(b+c) and (a-b).c=a-(b-c)

3. Addition and multiplication operations are commutative:

Va,beF a+b=b+a and a-b=b-a

4. TF contains a unique zero element and a unique unit element:

0elF, VaeF a+0=a
JdlelF, VYaeF a-l=a

The first line should be read in the following way: "there exists an element 0 in F, such
that, for any element a belonging to IF, a+0=a". The second line is: "there exists an

element 1 in IF, such that, for any element a belongingto IF, a-1=a".

5. Eachelementin [F has a unique additive inverse and a unique multiplicative inverse:
vaeF 3(-a)eF, a+(-a)=0
vaeF 3Ja'elF, a-a'=l1
6. Multiplication is distributive over addition:

va,b,ceF a-(b+c)=a-b+a-c

These properties may appear obvious, but elsewhere in mathematics they do not necessarily hold. For
example, three-dimensional rotation operators do not, in general, commute (prove this as an exercise).
Examples of fields include rational numbers and real numbers. Examples of sets of numbers that are not

fields are integers and transcendental numbers (prove this as an exercise).

The following notation for the different fields is commonly used in mathematics: Z for integers (not a
field, but the symbol is there), QQ for rational numbers, R for real numbers, C for complex numbers and

H for quaternions. Z in particular is often used in solutions for trigonometric equations, for example:

COS(X)ZI/\/E = X=1iz/4+27zn, nelZ



2. Transcendental numbers and functions

A transcendental number is defined as a number that is not a root of a polynomial equation with rational
coefficients. It is easy to demonstrate that the set of transcendental numbers is not a field — any field must
contain a unit element and 1 is not a transcendental number. The most famous transcendental numbers
are € and 77, but many more exist. All real transcendental numbers are irrational, but not all irrational

numbers of are transcendental (for example, \/5 is not).

A transcendental function is an analytic function (for our purposes "analytic" means "infinitely differenti-

able") that does not satisfy any polynomial equation

p(x f(x))=0

where p(X, y) is a polynomial in X and Yy with integer coefficients. Transcendental functions cannot
be expressed using a finite sequence of addition, multiplication and root extraction operations. The fol-

lowing are common examples of transcendental functions:

f(x)=e*, f(x)=cos(x), f(x)=In(x)

Equations involving transcendental functions are called transcendental equations.

3. Transcendental equations - analytical solutions
The only type of transcendental equations that are readily soluble are those that may be brought into a
non-transcendental form by a variable substitution, for example:
2
y —1=0
cos’(x)-1=0 = (1)
y = cos(X)
This is a combination of a quadratic equation and an equation in which the variable to be solved for ap-
pears only as argument to the transcendental function. Because this equation is trigonometric, it has in-
finitely many solutions:
y2 -1=0 y==1
= = X=7zNh, NeZ (2)
y = cos(X) y = cos(x)
To the right is a useful graph that tabulates solutions
to common equations involving a single trigonomet-
ric function. The X axis corresponds to cosines and
the Y axis to sines. Please do not forget about the

periodicity and always include N.

Equations involving exponentials and logarithms

can usually only be solved analytically if they can be

reduced to a form that contains a single transcen-
dental function with all instances of X occurring in-

side it, for example:
ln(2cos(X))+ln(sin(X)) =0
U
In(2cos(x)sin(x))=0




In this case, the logarithm can be eliminated and the solution process continued:
. . V4 T
2cos(x)sin(x)=1 = sin(2x)=1 = 2X=5+27rn = X=Z+7rn, neZ

Examples of equations that either have no solutions at all, or have solutions that cannot be expressed in

an algebraic form (i.e. using additions, multiplications and roots of rational numbers), are:

E efE/kT 1
cos()=x reEe b xTE

Such equations are usually solved numerically.

4. Transcendental equations - numerical solutions

A large number of methods exist for numerical root finding. One method that is simple enough to be used
in manual calculations and efficient enough to produce a solution in reasonable time is Newton-Raphson
method. Isaac Newton observed in 1669 (and Joseph Raphson did, independently, in 1690) that the equa-

tion for the tangent line to a function f (X) at a particular point X,
y=f'(Xn)(X—Xn)+f(Xn) (3)

may be used as a basis for an iterative algorithm that moves closer and closer to the root:

fI(X“)(X“+1_Xn)+f(Xn):O = K =X - :'(())((:)) (4)

At each step, the algorithm replaces the difficult problem of finding the root of the original function with

the simple problem of finding the root of its tangent line.

30 4
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It may be demonstrated that the point X, moves closer and closer to the nearest root of f (X) when N
is increased. Note that Newton-Raphson algorithm requires an initial guess X, that it converges to the

nearest root to that initial guess and that it may fail to converge if the initial guess is not well chosen.

As an example, consider the root finding problem for exp(X)—SX:O. The corresponding Newton-
Raphson iteration equation is:
exp(Xn)—SXn

X =X exp(x,)—5

n-+1
If we begin our iterations at X, =3, we obtain the following sequence of numbers: X, =2.6629,
X, =2.5533, X, =2.5427, X, = 2.5426 and the five significant digits quoted stop changing at the point

when N=4, meaning that our root is found. As an exercise, find the other root by starting at X, =—1.



Week 8 workshop exercises

In Problems 1- 12, find exact solutions

1.

e
|
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2sinx +1=0,0=x<2mw
2cosx+1=0,0=x<2m
2sinx + 1 =0, all real x
2cosx + 1 =0,all real x
tanx+\/§=0,0§x<*rr
V3tanx + 1 =0,0=x<m
tanx + V3 = 0, all real x
V3tanx + 1 = 0, all real x

2c0s — V3 =0,0°=6<360°
V2sin® — 1 =0,0°=6<360°

. 2cos® —\V3=0,all6
12.

V2sinh —1=0,all 6

Solve problems 19-22 to four decimal places

19.
20.

1 — x = 2sinx, all real x

2x — cosx = 0, all real x

21. tan (x2) =8 —x, 0=x<m

22. tan2x =1+ 3x, 0 =x < 7/4

In Problems 23— 34, find exact solutions
23. 2sin’ § +sin26 = 0, all §

24. cos® B = 1sin 26, all 6

25. tanx = —2s8inx, 0 = x <2

26. cosx =cotx, 0 =x <27

27. sec (x/2) +2=0,0=x<2m

28. tan (x/2) — 1 =0,0=x<2w

29. 2¢cos’0 + 3sinH =0,0°= 0 < 360°

30. sin® 0 +2cos 0 = —2,0° = 6 < 360°

31. cos 20 + cos 6 =0, 0° =6 < 360°

32. c0s20 +sin’06 = 0,0° < 6 < 360°

33. 2sin® (x/2) = 3sin(x2) + 1 =0,0 =x = 2m

34. 4cos’2x —4cos2x+1=0,0<x <27

Solve Problems 43— 52 to four decimal places

43. 2sinx =cos2x,0 =x <27
44. cos2x + 10cosx =5,0=x <27
45. 2sin’x = 1 — 2 sinx, all real x

46. cos’x =3 — 5cosx, all real x



Enhanced difficulty problems for the brave

1. Prove the identities:

2
(a) tan +cot @ =seca csc (b) cot’ & =cos’ a+(cotacos )
1 .2 2 4
(c) —" =sin” Xcos~ X+cos" X (d) cot Bsec f=cscf

1

2 2
(e) seca+cesc’ o =————
s acos”

2. Simplify:
1+ tan® X b) sec’ y—cos’ Y " csc’ a—sin’ a
an A =7 7 c
1+cot? x tan’ y csc’ a(2 —cos’ a)

3. Prove the identities:

(a) sin Bcos(a — B)+cos fsin(a— ) =sina

t t -1
(b) cot (a + §) = S2Lecotp 1
cota +cot
4. Simplify:
sin 2X sin2a  sin2a sin3¢ —sinSa
(@) —— (b) 3 (c)
1+ cos2X 1—cos”a cosa cos3a +cosSa

5. Express as a monomial:

sin(X—y)+sin(y—z)+sin(z—x)

6. Prove that

(1+ a j(H b JZ(H\/EY

sin X Cos X

for all real numbers a,b, X with @,0>0 and 0 <x< /2.

7. Prove that

(4cos2 9“’—3)(4cos2 27°—3) =tan 9°

8. Simplify:

\/sin4 X +4cos® X —\/cos4 X+ 4sin’ X



