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Singlet States: Preparation and Detection (strong and weak coupling)
1. Interaction symmetry switching

Singlet states are eigenstates of the nuclear spin Hamiltonidheipresence of magnetic
equivalenceTo prepare a singlet stateowever,individual access to théwo spins in the singlet

pair must be grantedlhis requires the two nuclei to have a difference in their chemical shift
resonances, which is just the opposite of magiegfigvalence. The request to have the same spin
system to be nemagneically equivalent for access and magnetically equivalent for singlet storage
canstill be implementedvia an interaction symmetry switgrocedure. Thiswitch is not needed

in presence of near magneéiquivalence. Fig. 1 gives a general overview obfam.
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2. Field Cycling1

A field cycling method can supply the symmetry switching of spin interactions needed to prepare
and observe singlet statdhe method takes adviages bthe adiabatic changa spin states and
populations occurring whea spinsystem is exposed tomagnetic fieldwhose strengtis slowly
varied.Fig. 2 simulates the variatian energy and form of the four spin stat#sa homonuclear

two spinl/2 (y>0, J>0)system.
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Thepassage through the lexaossing poin{circle in Fig.9 need to bediabatic in orderto avoid
crossingobetween populations and statekich wouldcrosstransfer the population of one stabea
different one This levelcrossing occurs whetm~mJ.

Fig. 2 also shows that if one is able to create an imbalance of poputahayh field between the
of} level and the other three levets)d successively transport the sample in low field, trenhas
effectively overpopulated(or undey, it is the samebhe singlet state. This is the basis of the field
cycling singlet state NMRnethod The NMR pulse sequence that implements this nuetlogy is
reported in Fig. 3
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The preparation sequence A isg99-90y with 7, ="/A# and with the carrier frequency in the

middle of the resonances of the two nuclei @@= 0). It converts the longitudinal magnetization
l,+1,, (box 1) intor_! 1, box 2) according to:

1,=U(90g)U(H,,";)U(90,)!, = R, (90)€"™"R (90), (2.1)
where
H, =%A! (1,&,—1],2)%2/ (ILZ+I]’Z)+2!JILZIZ‘Z~%A! (1.-1..) (2.2)

The transformion in Eq. 2.1 can be broken down into three steps as:

R (90)(1,+1,,) =" (11, +15,)

N
i

@ (11,1 1,,) = (11,11, =R, (G0) R, (190)(! 1y ! 1) = (1! 1) (2.3)
1,=R(90) (1! 15,) = (12! 122)

Therefore pulsesequence A acts effectively as a selective 180 degree pulse that inverts only one of
the two spins. The density mataxtime point 2 coincides to:

Lo=(la! L) =" AC AL [ T (2.4)
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because of“=%+1z and1” :%—IZ, hencethe population representation lox 2. The field-cycling

adiabatic transformatiorepresented ifrig. 2 states that if we move the sample in a region of low
magnetidield, then the density matrix imox 2 would transforms into:

Ps =[S0 )(So| = |To )T (2.5)

i.e. an imbalance betweéme population of thesingld and that of theentral tripletstates

The fate of singlet and triplets is regulated by the relaxation propeftiggse statesSinglets
decay with a time constants Whereasthe triplet populatiorre-equilibrate exponentially with a
time constant Tand often E>>T; (as discussed in Lecture. 2hisdecayis sketchedn Fig. 4.
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Giving the result of Fig. 4, the density matat time point 4 and for a delayt s such that
T1<1 <Ts(in the case $>T)), Is:

fam (ISo><So|—§§|Tm><Tm |)e-m (2.6)

If the sample is now adiabatically moved back into high magnetic field, the same transfaraation
in Fig. 2 applies (right to left in this case) and the density matrix at pauiik be:

p. =l -4+ )+ ) ) ] @7)

which representan imbalance in population between tif¢ state and the mean of the other three
states(as in Box 5 of Fig. 3)This configuration is converted into an observable single quantum
NMR signal by the pulse sequence B-98180)0-13-9045 With 7, = 7/(2Aw)+1/(4J) and =, =1/(4J) .

3. Spin Locking®®

The field-cycling method may result impractical for many applmas, as inin-vivo MRI for
example, whemrither the fielcdheedgo be ramped up and down or the samm@edso be moved in

and out of the fieldlt would be more convenient in these cases to have the sample always sitting in
the same magnetic field. Itrs out that it is still possible to do that but this would require to lock
the singlet states with a radiofrequency field in order to prevent its mixing with the tripleT&ite.
experimental implementation of such a technique is reported in Bigdtbirns to be practical only

in the case of weak or strong coupling systems Aattsmaller than ~1 kHz
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A typical preparation sequence @uld be90y-t:-180-12-9000-T3 With 7, =1/(43),/,="/(! #)+1/(4J),
1,="/(2! #)and with the carrier frequengtacedin the middle of tk resonances of the two nuclei
(i.e. Zo= 0). Sequence Aconverts the longitudinal magnetization+1,, (p1) into 11,1 1;1; {p2),

as can be proved with the same arguments used in Sec 2. The density matrix at point 2 can also |
written as:

o=t (A [ #)" (XS] To)(T) (3.1)

For proof use the equalities in Eg. 1.13 of Lecture He Tast equalityn Eq. 3.1represents the
density matrix at point 2 in condition of magnegiguivalence indicating that if we now impose
magnetic equivalence in high fielthenthe state describda/ Eg. 3.1would become combination

of the singlet andthe centraltriplet state.The way to impose magnetic equivalence in high field
makes use of a continuous radiofrequency field applied on the sample. To understand such .
radiofrequency field works wesould need a short digression into Average Hamiltonian Theory that
will be done in the next Section. For now we take asttragesulthat such aadiofrequencyield
suppresses, to a firstdmr approximation, the chemicstift Hamiltonian thus imposing magnetic
equivalence. The condition for this to work effectivdly that the nutation frequency of this field,

! ,, has to be bigger (at leasb3imes) thamw.

As discussed in Sec 2 arepresented ifrig. 4, if the time intervatyr betweernp,andps is bigger
than T, but smaller than d{and for T>>T;), then the density matrix at time pointv@uld be:

3~ §oB)(a|t % (ac)(aal+|Be){pal+|68) (BB & =" (3.2)

in analogy to Eq. 2.7. This configuration is converted into an observablghate single quantum
NMR signal by the pulse sequencet®90y:

L4~215,05, 215,05, (3.3)

Note that ther pulse sequencgchemeswhich replaceA and Bhere describedndthatprovidea
better performance in terms bfoadbandness versus J andw, have been reportéd

4. Average Hamiltonian Theory5
Average Hamiltonian Theory(AHT) provides approximate solutions of time dependent

Schrsdinger equationgand the relative Liouvillvon Neumann equatipnThe time dependent
Liouville-von Neumann equation is:
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! n — H n
m (t)=#iH(t) " (t) (4.1)
with general solutions given bigcussive integration

p(t)=p(0)+ D[ Ht)p(t)ar,

p(1)=p(0)+ (0]’ (H (1)p(0)+ (i) H e, )p(s, ) dtet, | +

(4.2)
[ZU (t, 0)}

n=0

U, @,0)= (i) [ dt [ dt,...[| " ar, H(t)H(1)... H(1,)

that can be rewritten as an exponenurdly if the ®ries expansion is time ordered:

n

N al"od#H()I
Up(00)= ()" dt " dt. 2t TH)H @) H (L) = PR (4.3)

U(t,0)= + U, t,0) = "

n=0

where the ordering is dory the Dyson time ordering operatoP. Thelastexpansiorin Eq.4.2 is

clearly not practical and must be truncated. The problem is that despite all the involved
Hamiltonians are Hermitian the truncated series is(se¢ Appendixand therefore the truncated
propagator is not Unitary. A wao circumvent this problerwas found byMagnus andis based

on the BakeilCampbelHausdorff relationThe argument goes like this: suppose the interval
dividedinto small steps:

t=2rk (4.4
k
such that the Hamiltoniaacting duwing every two consecutive stegan be considered time
independentife. the step is small enougind/or the Hamiltonian is not soong). The propagator
in Eq. 43 s the result of an infinite number of rotations in the spin space given by
U (t, 0) - e! iH,T, ll.“ ue! iHyT, lle! iHy Ty (45)
Note that ifthe H,’s are Hermitian operators then the propagator is made by a product of Unitary

transformations and hence is Unitafjhe trick is nowto express the entire sequence by a single
transformation under an average Hanmiém, i.e.:

U(t, 0) = . oM gy o pmiMl (4.6)

To expand the Averaged Hamiltonian in Eq. 4Magnus made useof the BakerCampbel
Hausdorff relation:
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B AL e{A+B+%[B,A]+é(l-B,[B,A]gﬂ-[B,A],Agt..}

ee= 4.7)
el = e,_+A+B+C+%[B,A]+.%;/[‘C,A]+[C, B]%l-c,[B,A]%t%

SO to obtain

Wodyo L " Te )
LiH," LiH,"y 140 iH," i Hl E$ $ [ A
e Mg e Mg =l P : (4.8)

Fromcomparisorof Eq. 4.8 wih thelast equality in Eq. 4:

_# &
ViHt=$!i" H,/ ! Luw [H/ HZ ]+

% 2 ( (4 9)
- l#ll i mn & .
H=2%" H/ ! - [HI!I,Hk!k]+...‘(

t%k 2 k 1>k

thedifferent orderof approximation in the averaged Hamiltonian are identédied

_—
aH" =;2Hk./k
k

— 0 —_i
H? = ZIEE[H[!,,H,C!,C] (4.10

k 1>k

These terms are usually referred (top to bottom) asdidsr averagélamiltonian, secondrder
average Hamiltonian and so dfech term in the series of Eq. 4.i0Hermitian(see appendix for
proof) and therefore the truncated series is &samitian(the same was not true for the truncated
seriesin Eq. 42). A generaliation of Eqg. 410 is ready made by changing the discret® an
integralform:

— 1,:
H®Y - | H (1),

A = L iy ) 41 (). () (4.10)

Moreover, for timedependent cyclic Hamiltoniamvith periodz. such that:

H(t+t)=H(t) (4.12)

the firstorder average Hamonian issimply the averageof the Hamiltoniarcalculatedover a full
period,z.. And, if the observation is stroboscopic, i.etha end ofeachof ther cycles of duration
t., only the propagatot/(s.+t,f)= U(t.) is needed to calculate the total exan. Eg. 49 converges
at a ratesimilar to thatof the expansion in Eg. 4.thereforethe equation becoms@seful only when
just a few termsvould beenough to describe the problem. Generally speakliiregseries converges
for:

Wt,00~1 or Hx <<1 (4.13)
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Eq. 4.8 is very important andemindsthe user that a change of franfateraction frame
transformation, see Sec 4.4hd a proper choice of such a frame can severely influence the
convergence of the Magnus expansion.
4.1 Interaction frame transformations

Given the Schrsdinger equation of the form:

I =H(t) (4.14)
the following frame transformation:
' =Rl
o 4.
1 =R (4.1

can be definednkering the secondine of Eq. 4.5 into Eq. 4.8 we have

i!!_t(R“l#):H(t)R"l#

By ! gl "

iR # +R ﬁ#z—H(t)R #

iR"lll—t# =H(t)R™ " il!_tR"l#
' ' * * (4.16)

Eq. 4.5 showsthat the representation of the Hamiltonid(r) in the interactionframe isalways
given by:

H :(RH (t) R‘l—iR% R‘l) * (4.17)

Moreover, f the change of frame is donroughthe transformatiorr=¢*, and the interaction
frameHamiltonianHr is time independenthen the second term on the right hand side of EQ. 4.1
reduces to:

. 0 -1 _ _ialHiet iHIFt=_
—|RER =-ig"! (<iH)e H (4.18)

H =gt H e ™ - H

4.2 Application of AHT to singlet spin-locking
In this Section we will demonstrate that the fostler Hamiltonian n the presence of a CW

radiofrequency fieldloes not contain chemical shift contributions. To do this we start writing down
the Hamiltonian in the rotating frame as:
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H=H;"+H,,

H=w,(I,+I )+l! (I.+1 )+l" (I.#1,. )+ o, (4.19)
n 1,x 2.x 2 ! 1,z 2,z 2 w 1,z 2,z JH172

(Note that a change of frame Lab to Rotating has alrém#yn made and is essential for the
convergence of Eq. 94to be used later).

We assume that the nutation frequency of the applied radiofrequency field (! ,) is much stronger

than the difference in chemical shift ("! ) - the case in which this assumption does not hold has
been treated in ReferentaVe now chooséhe followinginteraction frame Hamiltwian:

H|F=wn(|1,x+|2.x)+%!-’(ILZ+|2«Z) (420)
which ismore conveniently represented as:
Hy=!R()(I.+1,.) (4.20)

with

w, =1 2+(11 /2) 4.2)

! =arctan(2" /! w)

In practice, the Hamiltonian in Eq.20.can be seen as an effective field of strengthlted around
the y-axis by the anglé, as shown in Fig. 6.
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UsingEqQ. 4.2 and he recipe described in Eq. 8.tb derive the interaction frame representation of
the Hamiltonian in Eq. 49 we found

A=10 R (0) R (0)(1 -1 )R (1) R (o)

(4.23

+ijy (Q)G_iw“(ll':ﬂz':)tR;l (6)(1112)Ry (e)el’ e('w,z*’z,;)'R;l (0)

The second term in Eq. 81 easy since

[11,.1,]=0  a=xy.z (4.24)
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andthereforeremains unchanged by thogsansformationThe first termcan bebrokendown into
pieces (sandwichedrom centerout), as:

R (! 1) R (1) =00s(!) (1! 122) ! sin() (1! 1)
e el (cos(1) (1,1 1,,) 1 sin(! ) (1! 1)) € = = cos(r) (1,1 1,,)1 sin(!)(cos(! o) (1! 1)t SN (1! 12y)) (4.25)

R (7 )geos(! ) (122! 1o)t Sin(?)(cos(! ) (1! 1o SN )1y ! 12y)JBRA(0) = 00S* (1) (1! 1. ) +sin(6)cos(! ) (1! 1)+
tsin(!)cos(? t)seos(! (1! 1,,)! sin(?)(1n.! 1o.)8b sin(?)sin(? ) (1,1 1,,)

to find out that

H=1 10, +co8” (1)(1,0 1,,)+sin(! )eos(! ) (1., ! 1, )+

. . . o o (4.26)
Lsin(! ) cos(aw,t)geos(0) (I, ! 1,,)! Sin(0)(1,.! 1. )9 sin(! )sin(wg)(1,,! 1,,)

AHT is now applied tocalculate the firsbrder average Hamiltonian ter(kqg. 4.11) using the

periods.=2#/! ., which is the period of thehosennteraction frame HamiltoniarT his gives

a1, _
<1):;’_; - Adi=ZA cos(#)[cos(! ) (I, ~ I, +sin(6) (I, ~ I, )|+ o, L1, @

= %Aw cos(6) R, (6)(I,. - I, ) +w, 11,

Remembering the definition ¢ given in Eq.4.22, for sufficient strong radiofrequey field, i.e.

for 1 ,>>"I | 94 (supposingrradiationin the middle of thespectrumi.e. % =0) we have6~90;.

In these condition&q. 4.Z demonstratethat the firstorder average Hamiltonian does not contain
chemical shift interactisterms

Appendix to Lecture 3: On the Hermitian properties of the average Hamiltonian

I The expansion in Eg. 4.1 is not Hermitian since the product of two Hermitian operators is
not Hermitian when the two operators do not commute.
(H1H2)+=H2+H1+ :HZHl
I The firstorder average Hamiltoniaf® - 11 H,!, IS Hermitian becauseit is the sum of

k

Hermitianoperators

| The seconarder 4@ -1 Lt Hzt,Ht] IS also Hermitian since the commutator of
11 k% k

t k 1>k
Hermitianoperators multiplied by the imaginary numb&rg alsoHermitian
(i[Hy Ha]) = (iHH, L iH,H) =i (HIH D HIHS) =i[Hy H,]
Moreover, anyeven order involvestimes an odd number of commutators and therefore all
the even terms are Hermitian.

I The thirdorder (and any odd order) involves an even number of commutators which is
always Hermitian:
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(H[HHL 8= (HHH, %H HLH, %6H HLH +HHH)
=(HIH/HI %H HIH 9% HIHS + HIHH ) =tH [ H H, T
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