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Singlet States: Preparation and Detection (strong and weak coupling) 
 

1. Interaction symmetry switching 
 
Singlet states are eigenstates of the nuclear spin Hamiltonian in the presence of magnetic-
equivalence. To prepare a singlet state, however, individual access to the two spins in the singlet 
pair must be granted. This requires the two nuclei to have a difference in their chemical shift 
resonances, which is just the opposite of magnetic-equivalence. The request to have the same spin-
system to be non-magnetically equivalent for access and magnetically equivalent for singlet storage 
can still be implemented, via an interaction symmetry switch procedure. This switch is not needed 
in presence of near magnetic-equivalence. Fig. 1 gives a general overview of problem. 
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2. Field Cycling1  
 
A field cycling method can supply the symmetry switching of spin interactions needed to prepare 
and observe singlet states. The method takes advantages of the adiabatic change in spin states and 
populations occurring when a spin-system is exposed to a magnetic field whose strength is slowly 
varied. Fig. 2 simulates the variation in energy and form of the four spin states of a homonuclear 
two spin-1/2 (γ>0, J>0) system. 
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The passage through the level-crossing point (circle in Fig.2) need to be adiabatic in order to avoid 
crossing between populations and states, which would cross-transfer the population of one state to a 
different one. This level crossing occurs when Δω∼πJ.  
Fig. 2 also shows that if one is able to create an imbalance of population in high field between the 
αβ level and the other three levels, and successively transport the sample in low field, then one has 
effectively over-populated (or under-, it is the same) the singlet state. This is the basis of the field-
cycling singlet state NMR method. The NMR pulse sequence that implements this methodology is 
reported in Fig. 3. 
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The preparation sequence A is 900-τ1-9090 with ! 1 = " Δ# and with the carrier frequency in the 
middle of the resonances of the two nuclei (i.e. Σω = 0). It converts the longitudinal magnetization 
I1,z + I 2,z  (box 1) into I1,z ! I2,z *(box 2) according to: 
 

! 2 =U 9090( )U H0," 1( )U 900( ) ! 1 = Ry 90( )ei öH0" 1Rx 90( ) ! 1   (2.1) 
 
where  
 

H0 =
1
2
Δ! I1,z − I1,z( )+ 12

Σ! I1,z + I1,z( )+ 2! JI1,zI 2,z ~
1
2
Δ! I1,z − I1,z( )   (2.2) 

 
The transformation in Eq. 2.1 can be broken down into three steps as: 
 

Rx 90( ) I1,z + I 2,z( ) = ! I1,y + I 2,y( )

ei öH0! 1 ! I1,y ! I 2,y( ) = e
i
!
2

I1,z! I2,z( )
! I1,y ! I 2,y( ) = R1,z 90( )R2,z ! 90( ) ! I1,y ! I 2,y( ) = I1,x ! I 2,x( )

! 2 = Ry 90( ) I1,x ! I 2,x( ) = I1,z ! I 2,z( )
  (2.3) 

 
Therefore, pulse sequence A acts effectively as a selective 180 degree pulse that inverts only one of 
the two spins. The density matrix at time point 2 coincides to: 
 

! 2 = I1,z ! I 2,z( ) = " # " # ! #" #" * * (2.4) 
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because of Iα = 1
2
+ Iz and I β =

1
2
− I z , hence the population representation in box 2. The field-cycling 

adiabatic transformation represented in Fig. 2 states that if we move the sample in a region of low 
magnetic field, then the density matrix in box 2 would transforms into: 
 

ρ3 = S0 S0 − T0 T0   (2.5) 
 

i.e. an imbalance between the population of the singlet and that of the central triplet states. 
The fate of singlet and triplets is regulated by the relaxation properties of those states. Singlets 
decay with a time constant TS whereas the triplet population re-equilibrate exponentially with a 
time constant T1 and often TS>>T1 (as discussed in Lecture 2). This decay is sketched in Fig. 4. 
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Giving the result of Fig. 4, the density matrix at time point 4, and for a delay τLF such that 
T1< τLF<TS (in the case TS>>T1), is: 
 
 

! 4 ~ S0 S0 −
1
3

Tm Tm
m
∑

#

$
%

&

'
(e−" LF /TS   (2.6) 

 
If the sample is now adiabatically moved back into high magnetic field, the same transformations as 
in Fig. 2 applies (right to left in this case) and the density matrix at point 5 will be: 
 

ρ5 ~ αβ αβ −
1
3
αα αα + βα βα + ββ ββ( )

"

#
$

%

&
'e−! LF /TS   (2.7) 

 
which represents an imbalance in population between the αβ state and the mean of the other three 
states (as in Box 5 of Fig. 3). This configuration is converted into an observable single quantum 
NMR signal by the pulse sequence B: 900-τ2-18090-τ3-9045 with τ 2 = π (2Δω)+1 (4J) and τ 3 =1 (4J) .  
 
3. Spin Locking2,3  
 
The field-cycling method may result impractical for many applications, as in in-vivo MRI for 
example, when either the field needs to be ramped up and down or the sample needs to be moved in 
and out of the field. It would be more convenient in these cases to have the sample always sitting in 
the same magnetic field. It turns out that it is still possible to do that but this would require to lock 
the singlet states with a radiofrequency field in order to prevent its mixing with the triplet state. The 
experimental implementation of such a technique is reported in Fig. 5 and turns to be practical only 
in the case of weak or strong coupling systems with Δω smaller than ~1 kHz. 
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A typical preparation sequence A could be 900-τ1-1800-τ2-9090-τ3 with ! 1 =1 (4J) , ! 2 = " (! # )+1 (4J) ,
! 3 = " (2! # ) and with the carrier frequency placed in the middle of the resonances of the two nuclei 
(i.e. Σω = 0). Sequence A converts the longitudinal magnetization I1,z + I 2,z  (ρ1) into ! I1

+I 2
! ! I1

! I 2
+ *(ρ2), 

as can be proved with the same arguments used in Sec 2. The density matrix at point 2 can also be 
written as: 
 

! 2 = ! " # #" + #" " #( ) " S0 S0 ! T0 T0( )   (3.1) 

 
For proof use the equalities in Eq. 1.13 of Lecture 1. The last equality in Eq. 3.1 represents the 
density matrix at point 2 in condition of magnetic-equivalence indicating that if we now impose 
magnetic equivalence in high field, then the state described by Eq. 3.1 would become a combination 
of the singlet and the central triplet state. The way to impose magnetic equivalence in high field 
makes use of a continuous radiofrequency field applied on the sample. To understand such a 
radiofrequency field works we would need a short digression into Average Hamiltonian Theory that 
will be done in the next Section. For now we take as true the result that such a radiofrequency field 
suppresses, to a first order approximation, the chemical shift Hamiltonian thus imposing magnetic 
equivalence. The condition for this to work effectively2 is that the nutation frequency of this field, 
! n, has to be bigger (at least 3-5 times) than Δω.  
As discussed in Sec 2 and represented in Fig. 4, if the time interval τHF between ρ2 and ρ3 is bigger 
than T1 but smaller than TS (and for Ts>>T1), then the density matrix at time point 3 would be: 
 

ρ3 ~ αβ αβ !
1
3
αα αα + βα βα + ββ ββ( )"

#
$

%

&
' e! ! HF /TS

  (3.2) 
 

in analogy to Eq. 2.7. This configuration is converted into an observable anti-phase single quantum 
NMR signal by the pulse sequence B: τ3-900: 
 

! 4 ~ 2I1,zI 2,x ! 2I1,xI 2,z   (3.3) 

 
Note that other pulse sequence schemes, which replace A and B here described and that provide a 
better performance in terms of broadbandness versus J and Δω, have been reported4. 
 
4. Average Hamiltonian Theory5  
 
Average Hamiltonian Theory (AHT) provides approximate solutions of time dependent 
Schršdinger equations (and the relative Liouville-von Neumann equation). The time dependent 
Liouville-von Neumann equation is: 
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!
! t

" t( ) = #iH t( )" t( )   (4.1) 

 
with general solutions given by recursive integration: 
 

ρ t( ) = ρ 0( )+ (−i) H (t1)ρ t1( )dt10

t

∫
ρ t( ) = ρ 0( )+ (−i) H (t1)ρ 0( )+ (−i) H (t2 )ρ t2( )dt10

t1

∫ dt2( )+ ...0

t

∫

ρ t( ) = Un (t, 0)
n=0

∞

∑⎡
⎣⎢

⎤
⎦⎥
ρ 0( )

Un (t, 0) = (−i)
n dt10

t

∫ dt20

t1

∫ ... dtn0

tn−1

∫ H (t1)H (t2 )... H (tn )

  (4.2) 

 
that can be rewritten as an exponential only if the series expansion is time ordered: 
 

Un(t,0) = (! i )n dt10

t

" dt20

t1

" ... dtn0

tn! 1

" öTH(t1)H(t2)...H (tn) = öT
! i d#H #( )

0

t

"$
%&

'
()

n

n!

U t,0( ) = Un(t,0)
n=0

*

+ = öTe
! i d#H #( )

0

t

"

 (4.3) 

 
where the ordering is done by the Dyson time ordering operator, öT . The last expansion in Eq. 4.2 is 
clearly not practical and must be truncated. The problem is that despite all the involved 
Hamiltonians are Hermitian the truncated series is not (see Appendix) and therefore the truncated 
propagator is not Unitary.  A way to circumvent this problem was found by Magnus, and is based 
on the Baker-Campbell-Hausdorff relation. The argument goes like this: suppose the interval t is 
divided into small steps: 
 

t = τ k
k

∑   (4.4) 

such that the Hamiltonian acting during every two consecutive steps can be considered time-
independent (i.e. the step is small enough and/or the Hamiltonian is not so strong). The propagator 
in Eq. 4.3 is the result of an infinite number of rotations in the spin space given by:  
 

U t,0( ) = e! iHnτn "..."e! iH2τ2 "e! iH1τ1   (4.5) 
 
Note that if the Hk’s are Hermitian operators then the propagator is made by a product of Unitary 
transformations and hence is Unitary. The trick is now to express the entire sequence by a single 
transformation under an average Hamiltonian, i.e.: 
 

U t,0( ) = e−iHn! n ⋅... ⋅e−iH2! 2 ⋅e−iH1! 1 ≈ e−iHt   (4.6) 
 
To expand the Averaged Hamiltonian in Eq. 4.6, Magnus made use of the Baker-Campbell-
Hausdorff relation: 
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eBeA = e
A+B+

1
2

B,A[ ]+ 1
12

B, B,A[ ]!" #$+ B,A[ ],A!" #$( )+...{ }

eCeBeA = e
A+B+C+

1
2

B,A[ ]+.
1
2

C,A[ ]+ C,B[ ]+1
2

C, B,A[ ]!" #$
%
&
'

(
)
*+..

+
,
-

.
/
0

  (4.7) 

 
so to obtain: 
 

e! iHn" n #...#e! iH2" 2 #e! iH1" 1 = e
! i Hk" k

k
$ !

1
2

Hl" l ,Hk" k[ ]
l>k
$

k
$ +...

%
&
'

('

)
*
'

+'   (4.8) 
 
From comparison of Eq. 4.8 with the last equality in Eq. 4.6: 
 

! iHt = ! i Hk! k
k

" !
1
2

Hl! l ,Hk! k[ ]
l>k

"
k

" +...
#
$
%

&
'
(

H =
1
t

Hk! k
k

" !
i
2

Hl! l ,Hk! k[ ]
l>k

"
k

" +...
#
$
%

&
'
(

  (4.9) 

 
 the different order of approximation in the averaged Hamiltonian are identified as: 
 
 

H (1) =
1
t

Hk! k
k
∑

H (2) = −
i
2t

Hl! l,Hk! k[ ]
l>k
∑

k
∑

....

  (4.10) 

 
These terms are usually referred (top to bottom) as first-order average Hamiltonian, second-order 
average Hamiltonian and so on. Each term in the series of Eq. 4.10 is Hermitian (see appendix for 
proof) and therefore the truncated series is also Hermitian (the same was not true for the truncated 
series in Eq. 4.2). A generalization of Eq. 4.10 is ready made by changing the discrete into an 
integral form: 
 

H (1) =
1
t

H t1( )
0

t
! dt1

H (2) = "
i
2t

dt2 H t2( ),H t1( )#$ %&dt10

t2!0

t
!

....

  (4.11) 

 
Moreover, for time dependent cyclic Hamiltonians with period tc such that: 
 

H t +tc( ) = H t( )
U ntc,0( ) =U tc,0( )n

= e! iHntc
  (4.12) 

 
the first-order average Hamiltonian is simply the average of the Hamiltonian calculated over a full 
period, tc. And, if the observation is stroboscopic, i.e. at the end of each of the n cycles of duration 
tc, only the propagator U(tc+t,t)= U(tc)  is needed to calculate the total evolution. Eq. 4.9 converges 
at a rate similar to that of the expansion in Eq. 4.2, therefore the equation becomes useful only when 
just a few terms would be enough to describe the problem. Generally speaking, the series converges 
for:  
 

öU(tc,0) ~1     or      öHtc <<1  (4.13) 
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Eq. 4.13 is very important and reminds the user that a change of frame (interaction frame 
transformation, see Sec 4.1) and a proper choice of such a frame can severely influence the 
convergence of the Magnus expansion. 
 
4.1 Interaction frame transformations  
 
Given the Schršdinger equation of the form: 
 

i
!
! t

" = H t( )"   (4.14) 

 
the following frame transformation: 
 

!! = R!

! = R" 1 !!
  (4.15) 

 
can be defined. Inserting the second line of Eq. 4.15 into Eq. 4.14 we have: 
 

i
!
! t

R" 1 !#( ) = H t( )R" 1 !#

i
!
! t

R" 1 !# + R" 1 !
! t

!#
$

%
&

'

(
) = H t( )R" 1 !#

iR" 1 !
! t

!# = H t( )R" 1 !# " i
!
! t

R" 1 !#

iRR" 1 !
! t

!# = RH t( )R" 1 " iR
!
! t

R" 1$

%
&

'

(
) !#

i
!
! t

!# = RH t( )R" 1 " iR
!
! t

R" 1$

%
&

'

(
) #

i
!
! t
# = H #

* * (4.16) 

 
Eq. 4.16 shows that the representation of the Hamiltonian H(t) in the interaction frame is always 
given by: 

 
H = RH t( )R−1− iR

∂
∂t

R−1#

$
%

&

'
( ** (4.17) 

 
Moreover, if the change of frame is done through the transformation R = eiHIFt , and the interaction 
frame Hamiltonian HIF is time independent, then the second term on the right hand side of Eq. 4.17 
reduces to: 
 

−iR
∂
∂t

R−1 = −ieiHIFt −iHIF( )eiHIFt = −HIF

!H = eiHIFtH (t)e−iHIFt −HIF

 (4.18) 

 
 
4.2 Application of AHT to singlet spin-locking 
 
In this Section we will demonstrate that the first-order Hamiltonian in the presence of a CW 
radiofrequency field does not contain chemical shift contributions. To do this we start writing down 
the Hamiltonian in the rotating frame as: 
 



!"#$%&'()*+,-./0,*12*34/5,66,*748,49 *

* +,-./0,*:)*6;<* ?*

H = Hrf
CW +H int

H =ωn I1,x + I2,x( )+ 12
! ! I1,z + I2,z( )+ 12

" ω I1,z # I2,z( )+ωJ I1I2
  (4.19) 

 
(Note that a change of frame Lab to Rotating has already been made and is essential for the 
convergence of Eq. 4.9 to be used later).  
We assume that the nutation frequency of the applied radiofrequency field (! n) is much stronger 
than the difference in chemical shift ("! ) - the case in which this assumption does not hold has 
been treated in Reference 2. We now choose the following interaction frame Hamiltonian: 
 

HIF =ωn I1,x + I 2,x( )+ 12
! ! I1,z + I 2,z( )   (4.20) 

 
 which is more conveniently represented as:  
 

HIF = ! e
öRy !( ) I1,z + I2,z( )   (4.21) 

 
with 
 

ωe = ! n
2 + ! ! / 2( )2

! = arctan 2" n ! ω( )
  (4.22) 

 
In practice, the Hamiltonian in Eq. 4.20 can be seen as an effective field of strength ωe tilted around 
the y-axis by the angle θ, as shown in Fig. 6. 
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Using Eq. 4.21 and the recipe described in Eq. 4.18 to derive the interaction frame representation of 
the Hamiltonian in Eq. 4.19, we found: 
 

H =
1
2

! ωRy θ( )e−iωe I1,z+I2,z( )tRy
−1 θ( ) I1,z − I2,z( )Ry !( )ei! e I1,z+I2,z( )tRy

! 1 θ( )

+ωJRy θ( )e−iωe I1,z+I2,z( )tRy
−1 θ( ) I1I2( )Ry θ( )ei! e I1,z+I2,z( )tRy

−1 θ( )
  (4.23) 

 
 
The second term in Eq. 4.23 is easy since  
 

I1I2, Iα[ ] = 0 α = x, y, z   (4.24) 
 

z

x y

θ
ω

ω

Σω/2

n

e
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and therefore remains unchanged by those transformation. The first term can be broken down into 
pieces (sandwiches - from center out), as: 
 
Ry

! 1 !( ) I1,z ! I 2,z( )Ry !( ) = cos !( ) I1,z ! I 2,z( ) ! sin !( ) I1,x ! I 2,x( )

e! i! e I1,z+I2,z( )t cos !( ) I1,z ! I 2,z( ) ! sin !( ) I1,x ! I 2,x( )( )ei! e I1,z+I2,z( )t = cos !( ) I1,z ! I 2,z( ) ! sin !( ) cos ! et( ) I1,x ! I 2,x( ) ! sin ! et( ) I1,y ! I 2,y( )( )

Ry !( ) cos !( ) I1,z ! I 2,z( ) ! sin !( ) cos ! et( ) I1,x ! I 2,x( ) ! sin ! et( ) I1,y ! I 2,y( )( )"
#

$
%Ry

! 1 θ( ) = cos2 !( ) I1,z ! I2,z( )+sin θ( )cos !( ) I1,x ! I 2,x( )+

! sin !( )cos ! et( ) cos !( ) I1,x ! I 2,x( ) ! sin !( ) I1,z ! I 2,z( )"# $%! sin !( )sin ! et( ) I1,y ! I 2,y( )

       (4.25) 

 
to find out that: 
 

!H =! JI1I 2 +cos2 !( ) I1,z ! I 2,z( )+sin !( )cos !( ) I1,x ! I2,x( )+

! sin !( )cos ωet( ) cos θ( ) I1,x ! I2,x( ) ! sin θ( ) I1,z ! I2,z( )"# $%! sin !( )sin ωet( ) I1,y ! I2,y( )
* * (4.26) 

 
AHT is now applied to calculate the first-order average Hamiltonian term (Eq. 4.11) using the 
period tc=2#/! e, which is the period of the chosen interaction frame Hamiltonian. This gives: 
 
 

H (1) =
ωe

2π
H

0

2! " e∫ dt =
1
2
Δ" cos #( ) cos !( ) I1,z − I2,z( )+sin θ( ) I1,x − I2,x( )$% &'+ωJ I1I2

=
1
2
Δω cos θ( ) öRy θ( ) I1,z − I2,z( )+ωJ I1I2

 (4.27) 

 
 
Remembering the definition of $ given in Eq. 4.22, for sufficient strong radiofrequency field, i.e. 
for ! n >>"! , %!  (supposing irradiation in the middle of the spectrum, i.e. %!  = 0) we have θ~90¡. 
In these conditions Eq. 4.27 demonstrates that the first-order average Hamiltonian does not contain 
chemical shift interactions terms. 
 
 
Appendix to Lecture 3: On the Hermitian properties of the average Hamiltonian 
 

!  The expansion in Eq. 4.1 is not Hermitian since the product of two Hermitian operators is 
not Hermitian when the two operators do not commute. 

H1H2( )+
= H2

+H1
+ = H2H1 

!  The first-order average Hamiltonian öH (1) =
1
t

Hk! k
k
! is Hermitian because it is the sum of 

Hermitian operators  
 

!  The second-order Ĥ (2) = !
i
2t

Hlτ l,Hkτ k[ ]
l>k
"

k
" is also Hermitian since the commutator of 

Hermitian operators multiplied by the imaginary number (i) is also Hermitian: 
i H1,H2[ ]( )+

= iH1H2 ! iH2H1( )+
= ! i H2

+H1
+ ! H1

+H2
+( ) = i H1,H2[ ]  

Moreover, any even order involves i times an odd number of commutators and therefore all 
the even terms are Hermitian. 
 

!  The third-order (and any odd order) involves an even number of commutators which is 
always Hermitian: 
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H3, H1,H2[ ]!" #$( )
+

= H3H1H2 %H3H2H1 %H1H2H3 + H2H1H3( )+

= H2
+H1

+H3
+ %H1

+H2
+H3

+ %H3
+H2

+H1
+ + H3

+H1
+H2

+( ) = H3, H1,H2[ ]!" #$
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