Module 1V, Lecture 01: Spin Dynamics in Solid State DNP Experiments

A solid state DNP system typically comprises a number of electrons (usually located on specially added
stable radicals) and nuclei scattered randomly through the volume of a glassy sample, placed into a high
magnetic field and exposed to microwave irradiation from an external source. Because of the random-
ness in system geometry, no DNP simulation performed so far in the literature lays any claim to a quan-

titative match with the experiment. For a given system geometry such simulations can be done.

The treatment below might seem too general for most practical purposes — it includes every interaction
the spin system could potentially have — but such is the perspective of software developers: we do not

actually know which systems are simulated by the users and under which case-specific assumptions.

Laboratory frame spin Hamiltonian
The spin Hamiltonian for a system with an arbitrary number of electrons and nuclei under microwave

irradiation has the following general form:
H=H,+H +H +H,+H,, (1)

The Zeeman interaction Hamiltonian /, has contributions from electrons and nuclei:
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where EO = (O 0 BO) is the applied magnetic field, Ai:) are electron Zeeman interaction tensors
and Ag\]f) are nuclear Zeeman interaction tensors. Both types of tensors are, in general, anisotropic and
are easy to calculate or extract from the experimental data. Inter-nuclear interaction Hamiltonian con-

tains scalar and point dipolar contributions:
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where both indices run over nuclei, J&k) are inter-nuclear J-couplings (rather hard to calculate, but
usually available from experimental data, angular frequency units assumed), 7&7) are nuclear magneto-
gyric ratios and f}.k are inter-nuclear distance vectors, which may be extracted from energy minimum
molecular geometry. In the spherical tensor form:
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The electron-nuclear Hamiltonian contains isotropic and anisotropic hyperfine interactions:
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where j index runs over electrons, k index runs over nuclei and Ag;k) are electron-nuclear hyperfine

interaction tensors. They are easy to predict and do not have the point dipole form because electrons

are delocalized. Inter-electron interaction Hamiltonian contains exchange and dipolar contributions:
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where both indices run over electrons, the electron magnetogyric ratios yéj) may be different for dif-
ferent electrons and orientation due to the difference in their g-factors. Exchange interactions J](E{;:’k) are
in practice unpredictable theoretically because they effectively include the non-point dipolar effects and
other contributions — they must be determined experimentally. In the spherical tensor form:
2 EE) (! .
Hy, :szﬁklm)Tn(z)(]:k) (7)
Jj<k Im

Finally, the microwave term at the frequency @,,,, is assumed to generate an oscillating magnetic field

on the X axis of the laboratory frame of reference:
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The amplitudes of the microwave terms at different electrons are, in general, different because the elec-
trons might in general have different g -tensors and would therefore respond differently to the magnet-
ic component of the applied microwave field El = (B1 0 O) . In practice, the spherical tensor expan-
sions and matrix representations of all Hamiltonian terms are calculated automatically at each spin sys-

tem orientation by Spinach kernel from the coordinate and coupling data provided by the user.

General DNP simulation formalism

If the purpose is to simulate high-field DNP without significant approximations, the most convenient
rotating frame is the one that removes all time dependence from the Hamiltonian — this is accomplished
by the electron rotating frame transformation with respect to the microwave frequency, that is, using
a)MWZk E&k) operator and keeping only zero order terms in the average Hamiltonian theory with re-

spect to the period of the rotating frame. As a result, the Zeeman Hamiltonian becomes:
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and the time dependence disappears from the microwave irradiation term:

efinwt + eia)MWt

PAI](AW = 1 Za](\f\)v (einthEk) + e—ia)thE"ka)) _
k (10)
= iy (B et B 4 )2 ) (B + £
¢ k

The inter-nuclear part given in Equations (3) and (4) remains unchanged because it commutes with elec-
tron operators. In the electron-nuclear part of the Hamiltonian only weak and pseudosecular terms sur-
vive (EZNZ and Ezﬁi) and in the inter-electron part only the secular terms (Eém)l%ék) and Eim)l%g))
remain. The relaxation superoperator (whatever the model) should similarly be stripped of all terms that

oscillate under the electron rotating frame transformation.
Simple forward time propagation under the resulting Liouvillian:
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where double hat signifies a commutation superoperator, primes indicate microwave frequency rotating

frame and ]éTH is thermalized (i.e. modified in such a way as to drive the system to the correct thermal

equilibrium), gives the time dependence of the longitudinal magnetization on the m-th nucleus:
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and thus the time dependence of the DNP effect. In practical calculations an average over spin system

orientations and distance distributions is usually needed.

If steady-state magnetization is required, a single sparse backslash operation suffices:
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Unlike Equation (11), the relaxation superoperator in this expression should not be thermalized.

The implementation of the method described in this section is called “exact” in the Spinach library. Its
greatest advantage is generality — all kinds of solid-state DNP simulations may be performed, including
those that do not fall into the standard solid effect / cross effect classification and those involving nuclei
of several different types. A purely computational downside is the fact that the norm of the resulting
Liouvillian is of the order of nuclear Zeeman interaction (hundreds of MHz). To obtain a trajectory that
lasts (typically) a few seconds either an expensive long-range propagator is required, or a few billion
time steps. Neither is particularly difficult on modern hardware — example simulations included with

Spinach accomplish this for over 20 spins in Liouville space.

Solid Effect DNP

We will now make three significant assumptions: that the system has only one electron (and therefore
all inter-electron couplings vanish), that all nuclei in the system have the same Zeeman frequency @y
and that the microwave frequency is equal to either the electron-nuclear double-quantum frequency
W, + @, or to the electron-nuclear zero-quantum frequency @; —@, . The Zeeman Hamiltonian in
Equation (2) then becomes:
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If we perform a rotating frame transformation with respect to this Hamiltonian, it formally disappears

from the rotating frame description. The inter-nuclear interaction term acquires some frequencies:
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and the microwave irradiation Hamiltonian transforms into:
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By our assumption, the microwave frequency is close to the electron frequency, meaning that

Wy + Wy, is much larger than @, — w,,,, and may be ignored:
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The electron-nuclear coupling term also acquires some frequencies:
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After collecting the terms in the rotating frame Hamiltonian and grouping them according to their fre-

quency, we get (assuming A =+, ):
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These terms are generated automatically in Spinach from user-supplied electron and nuclear coordi-

nates. Our final Liouvillian is:

A

H(t)=e?™H_+e™H +H,+e™H, +e¢"™H,, +iR (20)

We are now all set to apply the average Hamiltonian theory by cumulant averaging over the nuclear
Zeeman oscillation period. Simply using the Waugh'’s average Hamiltonian theory for the commutation

superoperators (and packing iR into ]:IO for convenience), we get:
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and so on — after some extra non-commutative patterns are defined, Mathematica crunches these ex-

pressions in seconds. Second-order averaging is generally sufficient in practical calculations.

The result is an average Hamiltonian with eigenvalues determined by the amplitudes of electron-nuclear
interactions (kHz to MHz) rather than nuclear Zeeman frequencies (around GHz) meaning that much
longer time steps can be taken at the propagation stage. The downside is a loss of generality and a sig-

nificant potential for breakdown in the various approximations.



