Quadrupole NMR

Marina Carravetta (marina@soton.ac.uk)

School of Chemistry, University of Southampton

March 24, 2014

Marina Carravetta (Soton)

Outline

- 2 Hamiltonian for Quadrupolar nuclei
- Higer order terms
- \mathcal{H}_Q and sample rotation
- DAS and DOR

Nuclear spin and periodic table (1)

H				X	<mark>X</mark> I = 1/2			X	(I = 1/2								<u>He</u>
Li	Be			Х	< ا	> 1/2			l > 1/2			B	<u>C</u>	N	<u>0</u>	E	<u>Ne</u>
<u>Na</u>	Mg											<u>AI</u>	<u>Si</u>	<u>P</u>	<u>S</u>	<u>CI</u>	<u>Ar</u>
<u>K</u>	<u>Ca</u>	<u>Sc</u>	<u>Ti</u>	<u>v</u>	<u>Cr</u>	<u>Mn</u>	<u>Fe</u>	<u>Co</u>	<u>Ni</u>	<u>Cu</u>	<u>Zn</u>	<u>Ga</u>	<u>Ge</u>	<u>As</u>	<u>Se</u>	<u>Br</u>	<u>Kr</u>
<u>Rb</u>	<u>Sr</u>	<u>Y</u>	<u>Zr</u>	<u>Nb</u>	<u>Mo</u>	<u>Tc</u>	<u>Ru</u>	<u>Rh</u>	<u>Pd</u>	Ag	Cd	<u>In</u>	<u>Sn</u>	<u>Sb</u>	<u>Te</u>	Ī	<u>Xe</u>
<u>Cs</u>	<u>Ba</u>	<u>La</u>	<u>Hf</u>	<u>Ta</u>	<u>W</u>	<u>Re</u>	<u> </u>	<u>lr</u>	<u>Pt</u>	<u>Au</u>	Hg	<u>Τ</u> Ι	<u>Pb</u>	<u>Bi</u>	<u>Po</u>	At	Rn
Fr	Ra	<u>Ac</u>	Rf	Db	Sg	Bh	Hs	Mt									
			<u>Ce</u>	<u>Pr</u>	Nd	Pm	Sm	<u>Eu</u>	<u>Gd</u>	<u>Tb</u>	Dy	Ho	<u>Er</u>	Tm	Yb	<u>Lu</u>	
			Th	<u>Pa</u>	U	Np	<u>Pu</u>	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Nuclear spin and periodic table (2)

http://www.pascal-man.com/periodic-table/periodictable.html

Most quadrupolar nuclei have half-integer spin

Electric Interactions: Quadrupole (1)

Nuclei with l > 1/2 have a non-spherical charge distribution and can interact with external electric fields. Classically, we have

$$E = qV = \int
ho(\mathbf{r})V(\mathbf{r})d\mathbf{r}$$

We can expand the potential term in series as

$$V(\mathbf{r}) = V(0) + \sum_{j} \frac{\partial V}{\partial x_{j}} \Big|_{\mathbf{r}=\mathbf{0}} x_{j} + \frac{1}{2} \sum_{j,k} \frac{\partial^{2} V}{\partial x_{j} \partial x_{k}} \Big|_{\mathbf{r}=\mathbf{0}} x_{j} x_{k} + \dots$$
$$= V(0) + \sum_{j} V_{j} x_{j} + \frac{1}{2} \sum_{j,k} V_{jk} x_{j} x_{k} + \dots$$

V(0), V_j , V_{jk} are the potential, the electric field and electric field gradient, all calculated in $\mathbf{r} = \mathbf{0}$, hence they are numbers. x_j , x_k are Cartesian coordinates

Electric Interactions: Quadrupole (2)

$$E = \int \rho(\mathbf{r}) \left(V(0) + \sum_{j} V_{j} x_{j} + \frac{1}{2} \sum_{j,k} V_{jk} x_{j} x_{k} + \ldots \right) d\mathbf{r}$$

= $qV(0) + \sum_{j} V_{j} \int \rho(\mathbf{r}) x_{j} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} + \frac{1}{2} \sum_{j,k} V_{jk} \int \rho(\mathbf{r}) x_{j} x_{k} d\mathbf{r} d\mathbf{r}$

- qV(0) is a constant. Not important (we measure ΔE , not E)
- *ρ* x_jdr is an electric dipole. Never observed experimentally.
 Nuclear charge is distributed symmetrically
- *ρ* x_j x_k d**r** is a quadrupole moment. It appears if there is a non-zero electric field gradient, V_{jk}. It vanishes in highly symmetric environments

. .

 \mathcal{H}_Q : Definitions (1)

$$\mathcal{H}_{\mathsf{Q}} = rac{\mathsf{e}\mathsf{Q}}{2\mathit{I}(2\mathit{I}-1)\hbar}\,\mathbf{I}\cdot\mathbf{V}\cdot\mathbf{I}$$

where

- I: spin quantum number
- eQ: electric Quadrupole moment
- V: EFG tensor
- $V_{zz}^{P} = eq$: magnitude of EFG gradient
- $V_{xx} + V_{yy} + V_{zz} = 0$, hence in isotropic phases, \mathcal{H}_Q does not contribute to the spectral frequencies.

In the PAS:

$$\mathcal{H}_{\mathsf{Q}} \;\; = \;\; rac{e^2 q \mathsf{Q}}{4 I (2 I - 1) \hbar} \; \left[3 \hat{l}_{\mathsf{z}^{\mathsf{PAS}}}^2 - \hat{l}^2 + \eta (\hat{l}_{\mathsf{x}^{\mathsf{PAS}}}^2 - \hat{l}_{\mathsf{y}^{\mathsf{PAS}}}^2)
ight]$$

Some references and a range of notations in literature [1,2,3,4]

 \mathcal{H}_Q : Definitions (2)

$$\chi = C_{q} = \frac{e^{2}qQ}{\hbar} \qquad \eta = \frac{V_{xx}^{P} - V_{yy}^{P}}{V_{zz}^{P}}$$

$$\omega_{Q}^{P} = \frac{3\chi}{2I(2I-1)} \qquad P_{Q} = \chi \left(1 + \frac{\eta_{Q}^{2}}{3}\right)^{1/2}$$

$$\mathcal{H}_{Q} = \frac{\chi}{4I(2I-1)} \left[3\hat{I}_{z^{PAS}}^{2} - \hat{I}^{2} + \eta(\hat{I}_{x^{PAS}}^{2} - \hat{I}_{y^{PAS}}^{2})\right]$$

$$= \frac{\chi}{2I(2I-1)} \sum_{k=-2}^{2} (-1)^{k} T_{2k} A_{2-k}$$

$$= \frac{\omega_{Q}^{P}}{3} \sum_{k=-2}^{2} (-1)^{k} T_{2k} A_{2-k}$$

\mathcal{H}_Q : Definitions (3)

$$\begin{aligned} \mathcal{H}_{Q} &= \frac{\omega_{Q}^{P}}{3} \sum_{k=-2}^{2} (-1)^{k} T_{2-k} A_{2k} \\ &= \frac{\omega_{Q}^{P}}{3} \sum_{k=-2}^{2} (-1)^{k} T_{2-k} \sum_{j} A_{2j}^{P} D_{jk}^{(2)}(\Omega^{PL}) \end{aligned}$$

with

$$\mathbf{A}^{\mathbf{P}} = \left\{ \frac{\eta}{2}, 0, \sqrt{\frac{3}{2}}, 0, \frac{\eta}{2} \right\}$$

since it is often convenient to have the spin tensors in the lab frame when an external field is applied.

\mathcal{H}_Q : Interaction Frame Hamiltonian in high field

$$\mathcal{H} = \mathcal{H}_{Z} + \mathcal{H}_{Q} = \mathcal{H}_{A} + \mathcal{H}_{B}$$

If $\mathcal{H}_{\mathsf{Q}} < \mathcal{H}_{\mathsf{0}},$ in the high field approximation we can transform to the interaction frame

$$\begin{split} \tilde{\mathcal{H}}_{Q}(t) &= e^{i\omega_{0}l_{z}t}\mathcal{H}_{Q}e^{-i\omega_{0}l_{z}t} \\ &= \frac{\omega_{Q}^{P}}{3}\sum_{k=-2}^{2}(-1)^{k}A_{2k}T_{2-k}e^{i\omega_{0}kt} \end{split}$$

It is useful to check convergence of $\overline{\mathcal{H}}_{Q}$ over one period.

$\bar{\mathcal{H}}_Q$ in high field (1)

$$\bar{\mathcal{H}}_Q = \bar{\mathcal{H}}_Q^{(1)} + \bar{\mathcal{H}}_Q^{(2)} + \dots$$

For nuclei with $\mathcal{H}_Q \ll \mathcal{H}_Z$ it may be sufficient to use just $\bar{\mathcal{H}}_Q^{(1)}$

$$\begin{aligned} \bar{\mathcal{H}}_{Q}^{(1)} &= \frac{\omega_{Q}^{P}}{3} A_{20}^{L} T_{20} \\ &= \frac{\omega_{Q}^{P}}{3} A_{20}^{P} \frac{1}{2} \left(3\cos^{2}\beta - 1 + \eta \sin^{2}\beta \cos 2\alpha \right) T_{20} \\ &= \frac{\omega_{Q}}{3} A_{20}^{P} T_{20} \end{aligned}$$

with

$$\omega_{\mathsf{Q}} = \omega_{\mathsf{Q}}^{\mathsf{P}} \frac{1}{2} \left(3\cos^2\beta - 1 + \eta \sin^2\beta \cos 2\alpha \right)$$

$\bar{\mathcal{H}}_Q$ in high field (2)

The energy levels are perturbed by

$$\begin{aligned} \bar{\mathcal{H}}_{Q}^{(1)} &= \frac{\omega_{Q}}{3} A_{20}^{P} T_{20} \\ &= \frac{\omega_{Q}}{3} A_{20}^{P} \left(3I_{z}^{2} - I(I+1) \right) \end{aligned}$$

and the energy corrections are

$$\langle I, m | \bar{\mathcal{H}}_{Q}^{(1)} | I, m \rangle = \frac{\omega_{Q}}{3} A_{20}^{P} \langle I, m | 3I_{z}^{2} - I(I+1) | I, m \rangle$$

= $\frac{\omega_{Q}}{3} A_{20}^{P} (3m^{2} - I(I+1))$

The energy changes to first order are the same for levels with the same |m| values.

Energy diagram for integer quad spins

Spin
$$I = 1$$

Zeeman First Order Quadrupole

All transitions move are shifted from ω_0 , which leads to significant complications if \mathcal{H}_Q is large.

Spin I = 1 nuclei

²H: Solid echo often used due to dead-time problems. Direct observation (2µs dead time) versus spin echo shown below

¹⁴N: Large χ & low γ : tough to observe.

Recent revive through indirect observation & overtone NMR. NQR (nuclear Q resonance) to detect explosives.

Energy diagram for half-integer quad spins

For half-integer spins, the CT between the $\pm 1/2$ levels is unaffected.

$\bar{\mathcal{H}}_Q$: Higher order terms (1)

$$\bar{\mathcal{H}}_{\mathsf{Q}} = \bar{\mathcal{H}}_{\mathsf{Q}}^{(1)} + \bar{\mathcal{H}}_{\mathsf{Q}}^{(2)} + \dots$$

Convergence is often slow and may require often 2, sometimes 3, orders:

$$\begin{split} \bar{\mathcal{H}}_{Q}^{(2)} &= \frac{1}{2i\tau_{L}} \int_{0}^{\tau_{r}} dt_{2} \int_{0}^{t_{2}} \left[\mathcal{H}(t_{2}), \mathcal{H}(t_{1})\right] dt_{1} \\ &= \frac{1}{2i\tau_{L}} \left(\frac{\omega_{Q}^{P}}{3}\right)^{2} \sum_{j,k} (-1)^{k+j} A_{2k} A_{2j} \left[T_{2-k}, T_{2-j}\right] \times \\ &\times \int_{0}^{\tau_{L}} dt_{2} \int_{0}^{t_{2}} e^{i\omega_{0}(kt_{2}+jt_{1})} dt_{1} \end{split}$$

$\bar{\mathcal{H}}_Q$: Higher order terms (2)

$$\begin{split} \bar{\mathcal{H}}_{Q}^{(2)} &= \frac{(\omega_{Q}^{P})^{2}}{9\omega_{0}} \sum_{k \neq 0} \frac{1}{k} \left(A_{2k} A_{2-k} \left[T_{2k}, T_{2-k} \right] + A_{2k} A_{20} \left[T_{2k}, T_{20} \right] \right) \\ &\approx \frac{(\omega_{Q}^{P})^{2}}{9\omega_{0}} \sum_{k \neq 0} \frac{1}{k} A_{2k} A_{2-k} \left[T_{2k}, T_{2-k} \right] \\ &= \frac{(\omega_{Q}^{P})^{2}}{9\omega_{0}} \sum_{k \neq 0} \frac{1}{k} \sum_{J=0}^{4} \sum_{j=0}^{4} C(2, 2, J; k, -k) A_{J0} \times \\ & \left\{ C(2, 2, j; k, -k) - C(2, 2, j; -k, k) \right\} T_{j0} \\ &= \frac{(\omega_{Q}^{P})^{2}}{9\omega_{0}} \sum_{J=0}^{4} \sum_{j=1,3} \rho_{Jj} \mathcal{A}_{J0} T_{j0} \end{split}$$

$\bar{\mathcal{H}}_Q$: Higher order terms (3)

Since the quadrupolar tensor is real and symmetric, only the spatial terms with even rank are non-zero

$$\bar{\mathcal{H}}_{Q}^{(2)} = \frac{(\omega_{Q}^{P})^{2}}{9\omega_{0}} \sum_{J=0,2,4} \sum_{j=1,3} \rho_{Jj} \, \mathcal{A}_{J0} \, \mathcal{T}_{j0}$$

where

• second-order isotropic shift of $\bar{\mathcal{H}}_Q^{(2)}$ coming from \mathcal{A}_{00} is [3]

$$\omega_{iso}^{(2)} \propto rac{1}{30} \, rac{(\omega_Q^P)^2}{\omega_0} \, \left(I(I+1) - rac{3}{4}
ight) \left(1 + rac{\eta^2}{3}
ight)$$

A₂₀ and A₄₀ are rank 2 and 4 tensors (see [4] for expression in their PAS)

Energy diagram for half-integer spins Spin I = 3/2

Simulated full spectrum for ⁸⁷RbClO₄

Quadrupolar parameters in simpson file on BB, Ref. [5].

CT with first and second order $\bar{\mathcal{H}}_{Q}^{(n)}$

Nutation curves & Quadrupole

For excitation over a wide ω_Q range and meaningful intensities, small flip angles are best (i.e., 30°)

 $\bar{\mathcal{H}}_Q$: high field & sample rotation (1)

$$\begin{aligned} \mathcal{H}_{Q}(t) &= \bar{\mathcal{H}}_{Q}^{(1)} + \bar{\mathcal{H}}_{Q}^{(2)} \\ &= \frac{\omega_{Q}^{P}}{3} \sum_{m=-2}^{2} A_{2m}^{R} D_{m0}^{(2)}(\omega_{r}t + \alpha_{0}, \beta_{R}, \gamma_{0}) T_{20} + \\ &\frac{\omega_{Q}^{2}}{9\omega_{0}} \sum_{J=0,2,4} \sum_{j=1,3} \sum_{M=-J}^{J} \rho_{Jj} \mathcal{A}_{JM}^{R} D_{M0}^{(J)}(\omega_{r}t + \alpha_{0}, \beta_{R}, \gamma_{0}) T_{j0} \end{aligned}$$

Under fast rotation, all time-dependent terms vanish over τ_r to first order, hence only m = 0 and M = 0 survive

$$\begin{aligned} \bar{\mathcal{H}}_{Q} &= \frac{\omega_{Q}^{P}}{3} \, A_{20}^{R} \, d_{00}^{(2)}(\beta_{R}) \, T_{20} \, + \\ & \frac{\omega_{Q}^{2}}{9\omega_{0}} \, \sum_{J=0,2,4} \, \sum_{j=1,3} \, \rho_{Jj} \, \mathcal{A}_{J0}^{R} \, d_{00}^{(J)}(\beta_{R}) \, T_{j0} \end{aligned}$$

$\bar{\mathcal{H}}_Q$: high field & sample rotation (2)

The reduced Wigner matrix d_{00}^2 and d_{00}^4 coincide with the Legendre polynomials ($z = \cos \beta$):

where $P_2(\cos 54.74^\circ) = 0$ and $P_4(\cos 30.56^\circ) = P_4(\cos 70.12^\circ) = 0$

$\bar{\mathcal{H}}_Q$: high field & sample rotation (3)

Marina Carravetta (Soton)

Removal of second order broadening under rotation

MAS alone can not produce high resolution spectra.

- At the magic angle, rank 2 spatial tensors are eliminated
- Rank 2 and rank 4 space terms vanish at different angles

Alternative approaches are needed

- Mechanical:
 - DOR (Double rotation) [6]
 - DAS (Dynamic angle spinning) [7]
- Pulse sequences:
 - MQMAS
 - STMAS

DOR (1)

For instance

$$egin{aligned} & eta_2 = 54.74^{
m o} \ & eta_1 = 30.56^{
m o} \end{aligned}$$

To achieve high resolution, the rotations are aimed at suppressing the $P_2(\cos \beta_2)$ and $P_4(\cos \beta_1)$ Legendre polynomials.

DOR (2)

Rotation around R_2 is moderately fast.

Rotation around R_2 is a lot slower, and gives rise to the ssb visible in the DOR spectrum [4].

²³Na NMR on sodium oxalate, outer rotor=400-900Hz; inner rotor=4 kHz

These ssb can also be partly eliminated [8,9]

DAS

The sample is spun at β_1 , during t_1 and β_2 during t_2 , by suddenly flipping the rotation axis of the sample [7, 1].

 $\omega_{-\frac{1}{2}\leftrightarrow\frac{1}{2}}$ oscillates w.r.t the spinning axis β in [0°, 90°] and depends on the orientation of the PAS.

If the oscillation curves are scaled by their value at certain angles, there exist certain pairs $\{\beta_1, \beta_2\}$ at which $\omega_{-\frac{1}{2} \leftrightarrow \frac{1}{2}}(\beta_1) \propto \omega_{-\frac{1}{2} \leftrightarrow \frac{1}{2}}(\beta_2)$

$$P_{2}(\cos \beta_{1})t_{1} + P_{2}(\cos \beta_{2})t_{2} = 0$$

$$P_{4}(\cos \beta_{1})t_{1} + P_{4}(\cos \beta_{2})t_{2} = 0$$

There are no solutions in $\beta \in (39.23^{\circ}, 63.43^{\circ})$, hence none at the magic angle.

MQMAS (1)

MQMAS was a major breakthrough in the field. High resolution information can be obtained without specialised equipment [10].

MQMAS refocuses undesired terms generated in t_1 under a time $t_2 = kt_1$ by correlating SQ and MQ transitions.

MQMAS (2)

The symmetric transitions are given by [3, 10]:

$$\omega_{-m\leftrightarrow m} = \frac{(\omega_Q^P)^2}{\omega_0} \sum_{J=0,2,4} A_J C_J(I,m) P_J(\cos\beta)$$

where $C_J(I, m)$ are simple expressions which depend on the spin quantum numbers.

MQMAS experiments use these $C_J(I, m)$ values to generate an "echo" such that rank-4 terms are cancelled by setting

$$t_2 = \left|\frac{C_4(I,m)}{C_4(I,\frac{1}{2})}\right| t_1$$

MQMAS (3)

MQMAS spetra need to be specially processed, a procedure called shearing. [11]

MQMAS (4)

Some general considerations:

- The efficiency of MQMAS is in general quite low.
- The MQ efficiency goes down with higher quantum orders.
- The efficiency improves very steeply when with the nutation frequency of the exciting rf pulses.
- The original MQMAS sequence gives 2D spectra which are not in pure absorption.
- Modifications of this sequence lead to spectra with a pure absorption phase.

Split-t₁ Whole Echo MQMAS sequence

For sites with relatively long T_2 , the acquisition of a whole echo [12, 13] boosts the signal and provides pure phase absorption line shapes [3]. Some versions of this experiment require no shearing needed.

Z-filtered MQMAS sequence

This is a very robust sequence [14,3] with can be used on samples with both long and very short T_2 . It needs shearing.

3QMAS of ⁸⁷RbNO₃ at 4.7 T & 10 kHz

Marina Carravetta (Soton)

Enhancement schemes for MQMAS signal (1)

There are many schemes to enhance the MQMAS signal (some for spin 3/2 below).

Enhancement schemes for MQMAS signal (2)

Enhancement schemes applied to ⁸⁷RbNO₃ [3]

STMAS (1)

High resolution spectra are obtained by correlating ST and CT [15, 16].

These experiments are typically

- More tricky to set up, as may suffer from magic-angle missets [17]
- More efficient than the MQMAS (poor MQ excitation efficiency)
- Resolution in second dimension typically not as good as MQMAS

STMAS (2)

Marina Carravetta (Soton)

Quadrupole size and optimal approach

A wide range of approaches may be needed depending on the system under investigation [2].

- $\chi_Q < 0.7$ MHz, it is possible to acquire the spectrum with pulse-acquire method. MAS simulation of centerband can provide parameters.
- If the second order broadening is large, acquire with a Hahn echo with selective pulses to observe CT, short τ , preferably rotor synchronised

Selected Reading (1)

- M. J. Duer, Solid State NMR Speectroscopy, Principles and Applications, Blackwell Science (UK), (2002).
- [2] K. J. D. MacKenzie and M. E. Smith, Multinuclear solid-state NMR of inorganic materials, Pergamon, (2002).
- [3] A. Goldbourt and P. K. Madhu, Monatsh. Chem. 346, 1–38 (2002).
- [4] B. Q. Sun, J. H. Baltisberger, Y. Wu, A. Samoson and A. Pines, Solid State Nucl. Magn. Reson. 1, 267 – 295 (1992).
- [5] F. H. Larsen, H. J. Jakobsen, P. D. Ellis and N. C. Nielsen, J. Phys. Chem. A 101, 8597–8606; (1997).
- [6] A. Samoson, E. Lippmaa and A. Pines, *Mol. Phys.* 65, 1013 (1988).
- [7] K. T. Mueller, B. Q. Sun, G. C. Chingas, J. W. Zwanziger, T. Terao and A. Pines, J. Magn. Reson. 86, 470–487 (1990).
- [8] A. Samoson, Chem. Phys. Lett. **214**, 456 458 (1993).

Selected Reading (2)

- [9] A. Samoson and J. Tegenfeldt, J. Magn. Reson. A **110**, 238–244 (1994).
- [10] L. Frydman and J. S. Harwood, J. Am. Chem. Soc. 117, 5367–5368 (1995).
- [11] A. Medek, J. S. Harwood and L. Frydman, J. Am. Chem. Soc. 117, 12779 (1995).
- [12] D.Massiot, B.Touzo, D.Trumeau, J.P.Coutures, J.Virlet, P.Florian and P.J.Grandinetti, Solid State Nucl. Magn. Reson. **6**, 73–83 (1996).
- [13] S. P. Brown and S. Wimperis, J. Magn. Reson. 124, 279–285 (1997).
- [14] J.-P. Amoureux, C. Fernandez and S. Steuernagel, J. Magn. Reson. 123, 116–118 (1996).
- [15] Z. Gan, J. Am. Chem. Soc. 122, 3242 (2000).
- [16] S. E. Ashbrook and Stephen Wimperis, *Progr. Nucl. Magn. Res. Spectr.* **45**, 53–108 (2004).

Selected Reading (3)

[17] S. E Ashbrook and S. Wimperis, J. Magn. Reson. 162, 402 – 416 (2003).