Module VI, Lecture 01: Generalized Cumulant Expansion

Generalized cumulant expansion (GCE) method is a generalization and rectification of Redfield theory —
it explicitly considers terms of all orders in the perturbation expansion and avoids the convoluted hand-
waving (coarse-graining of time, fast correlation function decay, lack of correlation between the system
and the bath, etc.) that is present in Redfield theory. The core argument of GCE method is that, to be
correct, the ensemble averaging must be performed on the exponential propagator applied to the initial

state of the system, rather than the differential equation of motion:
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where angular brackets denote ensemble averaging, exp(o) denotes a time-ordered exponential (which
was discussed in detail in Module 1) and the initial state is assumed to be the same for all members of
the ensemble. Because the treatment is performed on the general solution to the Liouville — von Neu-
mann equation, it has the advantage of being free, at least in the initial formulation, of any assumptions

about the statistical properties of the physical system.

If the noise in the system is stationary, we would expect the time propagation superoperator in Equa-

tion (1) to also be stationary. The objective of the GCE method is to find the generator L of the corre-
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Moments and cumulants: random variable case

sponding semigroup:

Let p(x) be the probability distribution of a stochastic variable x. The n-th moment of this probability
distribution is defined as the expectation value of x":
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and the moment-generating function as the expectation value of er
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The following relations hold for the power series and derivatives:
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The logarithm of the characteristic function is called the cumulant-generating function and its series co-

efficients <<x">> are called cumulants of the stochastic variable x:
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Expressions for cumulants in terms of moments may be obtained directly from the definition and Equa-

tion (5), for example:
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et cetera. It should be noted that <ek”> =1 for £k =0. The relationship between moments and cumu-

lants may be summarized as follows:
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Moments and cumulants: random vector case

For an n-element vector of stochastic variables {xl,xz,...} with the joint probability distribution
p(xl,xz,...) the moment-generating function is the expectation value of the exponential of an arbi-

trary linear combination of its elements:

<ek1xl+k2x2+...> _ J‘p (x1 Xy, ) P 14 9)

where £, are the coefficients and the integral is taken over the volume of the space containing

{xl , xz,...} . Joint moments are defined via the derivatives of this function:
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and joint cumulants via power series coefficients of its logarithm:
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Expressions for joint cumulants in terms of joint moments follow immediately from Equation (11):
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More work is required to obtain subsequent expansions, but the procedure is largely technical and may

easily be coded up in Mathematica. Note that Equations (12) simplify for centered stochastic processes.



Kubo’s theorem

A general expression for the Taylor series around the origin in the multi-dimensional case is:
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In combination with Equation (11) this allows us to obtain a series for the cumulant-generating function

in terms of cumulants:
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where we have implicitly defined <<1>> =0. We will now take advantage of the definition of the Rie-

mann integral:
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to take the limit of Equation (14) by replacing k,x; with x(z‘i)é‘ti and noting that terms of higher than

first order in any of the J¢, do not survive the limit operation:
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The final expression (published by Ryogo Kubo in 1962) is:
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In this case, no time ordering is necessary because all scalars commute. The second variant of Equation

(17) does not require time-ordering.

Generalized cumulant expansion
To relate Kubo’s theorem to relaxation theory, we would note that the interaction representation of the

Liouville — von Neumann equation
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may be formally integrated to yield
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this process may be repeated multiple times, with the eventual result that
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As described in Lecture 8, this defines the time-ordered exponential propagator that takes the system

forward from 0 to ¢ in the case where the Hamiltonian superoperator is time-dependent:

&(1)=exp,, (—i [ar (t’)dt’}&(o) (21)
0

Time ordering is now necessary because ﬁlR (t) need not commute with itself at different times. This
brings us back to Equation (2), for which we can now take the ensemble average and express it in terms

of cumulants using Equation (17):
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The first few terms in the expansion on the right hand side are (assuming that I:IIR (t) is a centered sto-

chastic process to make the first moments vanish):
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The simple connection from the generalized cumulant expansion truncated at the second term to Red-

field theory is left as an exercise.



