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Abstract

We report progress with an old problem in magnetic resonance—that of the exponential scaling of simulation complexity
with the number of spins. It is demonstrated below that a polynomially scaling algorithm can be obtained (and accurate
simulations performed for over 200 coupled spins) if the dimension of the Liouville state space is reduced by excluding
unimportant and unpopulated spin states. We found the class of such states to be surprisingly wide. It actually appears that
a majority of states in large spin systems are not essential in magnetic resonance simulations and can safely be dropped from

the state space. In restricted state spaces the spin dynamics simulations scale polynomially. In cases of favourable interaction
topologies (sparse graphs, e.g. in protein NMR) the asymptotic scaling is linear, opening the way to direct fitting of molecular
structures to experimental spectra.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Spin dynamics simulations are a powerful and well
developed tool used extensively in all areas of magnetic res-
onance spectroscopy [1–4]. The most popular approaches
include the diagonalization [5,4], direct propagation [6,2],
many-body theory [7,8], perturbation theory [9,10] and
Campbell–Baker–Hausdorff series techniques [11,12], fre-
quently adapted to include spatial [13], temporal [14] and
permutation [15–17] symmetry, as well as a host of analyt-
ical [18,19] and numerical [1,20,21] techniques for pulse
sequence design and spin system analysis. Such simulations
have been successfully used for decades and excellent
reviews exist, outlining the theory, implementation and
programming in fine detail [2–4].

This tranquil picture, however, has one important prob-
lem: it only works for fewer than n � 10 spins. In numerical
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doi:10.1016/j.jmr.2007.09.014

* Corresponding author. Fax: +44 1865 275410.
E-mail address: ilya.kuprov@chem.ox.ac.uk (I. Kuprov).
simulations, the dimension of operator matrices is P2n and
a propagation step requires P4n multiplications, meaning
that the computation becomes prohibitively large for more
than ten, or with some tricks fifteen, spins. As n goes up,
the situation steadily gets worse, and for systems with over
20 spins the Liouvillian matrix cannot currently even be
stored, let alone diagonalized: we hit the notorious ‘expo-
nential scaling wall’ [22], and in quantum spin dynamics
there currently is no way around it.

We demonstrate in this communication that a polyno-
mially scaling spin dynamics simulation algorithm can be
obtained if certain assumptions are made about the
structure of the state space in which the spins evolve.
Specifically, it appears that a large number of states in
big spin systems (very high multi-spin orders and orders
linking the spins that are remote on the interaction
graph) are not essential in magnetic resonance simula-
tions and can be dropped from the state space. In
restricted state spaces the matrix dimensions scale poly-
nomially and accurate simulations may be performed
for over 200 coupled spins.
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2. The case for state-space restriction

Within the density operator formalism [23], the operators
spanning the state space may be written in the form
P1 � P2 � � � � � Pn, where each Pm is either a Pauli matrix
of spin m or an identity operator. If we were to restrict the
state space (thus far for no particular reason) and exclude
entanglements of more than k < n spins, the operators would
take the form: � � �E � P1 � � � � � P2 � E � � � � � Pk� � �, so
that k Pauli matrices are scattered among the identity
operators. The dimension N of the new state space is

N ¼ 4k n!

k!ðn� kÞ! ¼ 4k 1

k!
nðn� 1Þ � � � ðn� kþ 1Þ ¼ Oðð4nÞkÞ

ð1Þ

(with trivial modifications if spins greater than I = 1/2 are
present). The cost of the system propagation step in this re-
stricted space is O((4n)2k) multiplications, so the scaling is
polynomial in the total number of spins n. This is a tanta-
lizing possibility: if state-space restriction is a good approx-
imation, it promises fundamental improvements in the
simulation time. It is also clear that the procedure can be
made adaptive, with the level of description depending on
the local coupling density.

A number of arguments may be put forth to justify the
exclusion of high-order entanglements (illustrated schemat-
ically in Fig. 1). We may remember that (with rare, but
notable exceptions [24–27]) high spin orders will be relax-
ing or dephasing faster than low orders and therefore might
not accumulate in large quantities. Another appealing (if
retrospective) argument comes from the approximate
methods introduced during the early days of magnetic res-
onance: product operator treatments of even very compli-
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Fig. 1. Schematic illustration of the restricted state-space approximation.
For a given spin, the most important states in the state space are likely to
involve its nearest neighbors on the interaction graph. Very high
coherences and entanglements are likely to be unimportant (see text for
detailed analysis of these assumptions).
cated NMR pulse sequences rarely included spin orders
greater than four [28], suggesting that higher orders,
describing the fine multiplicity details, may be relatively
unimportant. Furthermore, Lee et al. have successfully
obtained analytical expressions for anomalous dipole–
dipole peaks in COSY and CRAZED type spectra by
neglecting certain high-order coherences [29]. It is also
known that in a linear chain of binary couplings, a two-
spin order with a spin that is k couplings away will only
accumulate in kth order upwards in time-dependent pertur-
bation theory (TDPT) [23]. That is, within the convergence
radius of TDPT, the accumulation will be slower the
further the two spins are away from each other on the
interaction graph. For very long-range connectivities it
might therefore be reasonable to suppress the correspond-
ing entanglements altogether. Yet another argument comes
from the success of the Bloch–Redfield–Wangsness relaxa-
tion theory [9,10]—if a second-order TDPT expression
(which by definition only includes direct coherence transfer
to at most the next nearest neighbor) is appropriately
closed in time (the q(0) fi q(t) substitution [9]), the result-
ing equations correctly describe the phenomena well
beyond what might be expected from second-order pertur-
bation theory [10].

It thus appears that restricting the state space to include
only low-order coherences and entanglements between
nearby spins is (a) not entirely unreasonable, at least in
the liquid state, and (b) promises fundamental improve-
ments in the spin dynamics simulation times. We shall
therefore proceed to a deeper algebraic analysis of the con-
sequences of state-space restrictions.

3. Algebraic consequences of state-space restriction

For a given static Liouvillian superoperator ^̂L the set G

of all possible forward and backward propagators is a uni-
parametric Lie group [30]:

e�i^̂Lt1 ; e�i^̂Lt2 2 G) e�i^̂Lt1 e�i^̂Lt2 ¼ e�i^̂Lðt1þt2Þ 2 G;

8e�i^̂Lt1 2 G 9ei^̂Lt1 2 G s:t: e�i^̂Lt1 ei^̂Lt1 ¼ ^̂E;
ð2Þ

that is, a product of two propagators is another propagator
and for every propagator there is a unique inverse. The set
of elements GðŜÞ ¼ fe�i^̂LtŜ; t 2 Rg is therefore a propagator
group orbit of the initial state operator Ŝ. The basis of the
space containing GðŜÞ is the minimal set of operators
required to describe the spin-system evolution exactly.
Reduced state-space approximations should therefore be
aimed at reducing (exactly1 or approximately) the
dimension of the space enclosing GðŜÞ.

Simply truncating the basis set to low spin orders is not
an option for the following reasons. Let the complete state
space be Q and the desired reduced state space be K. An
1 An example would be the common practice of treating uncoupled
subsystems separately. For independent subsystems the inter-subsystem
entanglement terms are usually outside the propagator group orbit.



Fig. 2. State-restricted NMR spectrum simulation results for a model 10-spin system (composed of 4 independent subsystems, from left to right: AB, A,
A2B, ABCD). (Left panel) 1D pulse-acquire spectrum simulation results (singles, doubles, triples and quadsrefer to the maximum allowed spin-state order)
and the corresponding state space dimensions. (Right panel) 2D COSY spectrum simulation convergence with the increase in approximation level and
CPU time used by the simulation.
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unsuitably chosen K is very likely not to be closed with
respect to infinitesimal propagation—it would contain
operators that leak out of it when the Hamiltonian super-
operator is applied:

9q̂ 2 K; �i½Ĥ ; q̂� 2 Q n K ð3Þ

Such operators q̂ may be called ‘‘loose ends’’. Accepting
the fact that the magnetization is lost when it is sent out
of K would lead to something resembling relaxation and
would amount to assuming that the states in QnK (states
in Q that are not in K) relax infinitely fast. This, however,
implies that the propagator will be non-unitary, and there-
fore the effective Liouvillian non-Hermitian. This will lead
to complex-valued energies and twisted phases and is best
avoided. An alternative strategy would be to keep the mag-
netization from diffusing away from the restricted state
space by renormalizing the truncated propagator, so that
it remains a unitary operator. However, the recovered mag-
netization would still be returned into the system in a non-
physical fashion: it will be smeared across the spin system;
this is also best avoided. Therefore, for any reduced state
space K it is a requirement that it is naturally closed with
respect to the original or modified temporal propagation
operator—for any state in K the result of its propagation
must also be in K:

8q̂ 2 K; �i½Ĥ ; q̂� 2 K ð4Þ

One way of achieving this would be to avoid direct manip-
ulation or truncation of the propagators (because of the
above concerns), and manipulate the state space at the
Liouvillian level. The propagator non-unitarity problem
then does not appear so long as the modified Liouvillian
stays Hermitian.

Because we know that small amounts of high-order
multi-spin entanglement are generated in the exact simula-
tions, it is clear that the operators we are about to neglect
are present in the system orbit. The task is therefore nar-
rowed to deflecting the orbit and preventing it from passing
through high entanglements. It is also clear that this objec-
tive cannot be achieved without modifying the Hamilto-
nian. The conclusion therefore is that the state restriction
should be accompanied by such modification of the system
Hamiltonian as would satisfy condition (4) yet have a min-
imal impact on the simulation quality.
4. Restricted state-space simulation results

Before embarking on a technical description of the con-
struction of restricted state spaces and Liouvillians satisfy-
ing conditions (2) and (4), we wish to present the results of
some simulations that utilize the restricted state space
approach. The mathematical and programming details
are presented in full in the subsequent sections and the
annotated program source code is included in the Supple-
mentary information.

Historically the most challenging parameter in all types
of approximations in magnetic resonance was the signal
phase [31,32]. We are pleased to report that the state-
restricted simulations get the phases precisely right at all
approximation levels (Fig. 2, left panel). The second fea-
ture in the difficulty ranking—intensity patterns for
strongly coupled nuclei—is also reproduced: once a
coupling is included, the relative peak intensities come
out correctly. The coupling patterns neatly approach the
exact result as the approximation level is increased: first
the doublets appear in their exact form, then triplets and
finally the more complicated splittings. Similar things
happen to COSY cross-peaks (Fig. 2, right panel). Finally,
the signal integrals do not depend on the approximation
level and always come out correctly.

It follows from both the definition of the restricted state-
space and from the simulation behavior in Fig. 2 that the
exact result is the natural limit of the approximation made.
However, the reduction in computational complexity is



Table 1
State space and matrix density statistics for the full and state-restricted simulations of the spin systems in Fig. 3c

Number of spins State-space dimension Quads Liouvillian
density (%)

Quads propagator
density (%)

Quads, speed-up
factorFull Doubles Triples Quads

6 4096 109 532 1747 0.63 1.2 �2
12 1.7 · 107 262 2134 15,913 0.068 0.10 �103

18 6.9 · 1010 415 3943 37,981 0.028 0.045 �106

24 2.8 · 1014 568 5752 60,985 0.017 0.024 �109
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Fig. 3. (a) CPU time (AMD Opteron 265 / DDR400) required for the simulation of a 2D COSY spectrum of spin systems containing between 6 and 246
spins. (b) An example output of the simulation (indicated with yellow arrow in the left hand panel). (c) The coupling structure of the spin system used for
these simulations. The couplings are randomly selected within the indicated intervals, the chemical shifts are randomly selected within the spectral window.
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dramatic: with 4-spin clusters,2 which reproduce the spec-
trum in Fig. 2 exactly, the simulation is done with just
337 states as opposed to around 106 in the exact formula-
tion (Table 1). As a further demonstration, Fig. 3a reports
the timings for the simulation of a series of much more
complicated (and no longer disjoint) spin systems shown
in Fig. 3c. With a restricted state space, an explicit time-
domain density matrix propagation simulation of a
1024 · 1024 COSY spectrum of a strongly and densely
coupled 54-spin system takes 10 s with doubles, 100 s with
triples and about an hour with quads. The exact simulation
of a 2D spectrum of a coupled 50+ spin system is beyond
current computers.

The rule of thumb for the couplings is that including the
spin states up to n-tuples will correctly reproduce multiplet
structure arising from up to n coupled spins. Higher multi-
plicities will still be represented but with some distortions
(Fig. 2, left panel). Given that the state-space restriction
procedure (as well as the program listed in the Supplemen-
tary information) supports variable approximation levels,
tight knots of J-couplings (e.g. a valine side chain) may
be accommodated by a local increase in the number of spin
states. In principle, just accepting these distortions is an
2 Here and below, we refer to 1-, 2-, 3-, 4- and n-spin clusters as,
respectively, singles, doubles, triples, quads and n-tuples. It is important to
note that the clustering procedure is only used to decide which spin states
to include—the spin system is always simulated as a whole (see the
algorithm description below).
option: in the experiments where those splittings are decou-
pled or not resolved, the relevant cross-peaks will still
appear and will have the correct intensity.

Somewhat counterintuitively, restricted state space sim-
ulations can produce reasonably accurate results for quite
densely coupled spin systems. Fig. 4 shows a triples-
restricted simulation of the effect of a weak applied mag-
netic field on the product yield of backward electron
transfer in a spin-correlated radical pair formed by photol-
ysis of pyrene and N,N-dimethylaniline [33–35]. The circles
show the experimental data (presented as the first deriva-
tive of the product yield with respect to the magnetic field
intensity) which are essentially identical to an exact simula-
tion (1.6 · 106 states) using literature values of the 18 largest
hyperfine couplings [35]. The triples-restricted simulation
(4008 states), using the same hyperfine couplings agrees
with the data remarkably well in the practically interesting
[34,35] ‘‘low field’’ region where the electron Zeeman inter-
action and the hyperfine interactions are comparable in
strength. Under these conditions non-secular parts of the
hyperfine interactions cannot be neglected, and this is there-
fore a clear example of a large spin system in which the tra-
ditional approximate approaches (e.g. the weak coupling
assumption) cannot be employed, and in which conven-
tional methods of analysis are seriously impeded by the
enormous size of the spin system.

Another remarkable finding is that, even though we
have restricted the state space to just the states which are
supposed to be important and participate actively in creat-
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Fig. 4. Experimental data [35] (circles) showing the effect of a weak
applied magnetic field on the backward electron transfer in the photo-
generated pyrene / N,N-dimethylaniline radical pair and the result of the
triples-restricted simulation (annotated program code included in the
Supplementry information, for theoretical details see Ref. [48]). (Upper
inset) Structure of the two radicals involved in the reaction. (Lower inset)
Spin system topology and experimental values [33] of the isotropic
hyperfine coupling constants used in the simulation. See text for further
details.
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ing the coupling structure, both the Liouvillian and the
associated propagator are still very sparse (Table 1). On
the one hand this makes the simulation very CPU- and
memory-efficient, on the other this might be a hint that
even the intelligent state space restriction described below
is not the last step in improving the computational effi-
ciency and reducing the dimension of the spectral simula-
tion problem. Finally, an interesting result is that the
restricted Liouvillian, even for quads, is actually orders of

magnitude smaller than the full Hamiltonian (instead of
having the square of its dimension). Given the accuracy
of state-restricted simulations reported in Figs. 2–4 and
the state space reduction reported in Table 1, these facts
are astonishing. It appears that the majority of states in
any large spin system are not essential in NMR simulations
and can safely be dropped from the state space.
5. Restricted state-space construction

We will now outline the principal stages in the construc-
tion of the restricted state space and the effective Liouvil-
lian satisfying condition (4) as well as the group property
(2). The procedure is schematically illustrated in Fig. 5
and the annotated Matlab source code is included in the
Supplementary information.
5.1. Interaction graph construction and connected subgraph

expansion

For a given spin, the important states and coherences
are likely to involve its close neighbors on the interaction
graph. One can identify a subgraph (hereafter cluster) of
spins, which are the nearest neighbors, next nearest neigh-
bors, etc. Constructing the overall state space as a direct
sum of state spaces of these clusters (Fig. 5) satisfies our
requirements: the important states are included, and entan-
glements higher than the size of the biggest cluster are
excluded. Furthermore, cluster size can be varied through
the system to adapt to local changes in the coupling
density.

Graph-theoretical algorithms, as applied to chemical
problems, have recently been reviewed by Klein et al.
[36]. Linear-time algorithms exist for the enumeration of
sub-trees [37] and sub-graphs [38]. We adapted the depth-
first path-tracing procedure [39]. In the simulation, the spin
interaction matrices are supplied by the user as a part of
the system specification. The adjacency matrix for the spin
interaction graph is then a sparse logical array of the fol-
lowing form:

conmatrix ¼
1 if i and j are coupled

0 otherwise

�
ð5Þ

where conmatrix is the name of the corresponding vari-
able in the enclosed Matlab code. Connected sub-graph
expansion then results in a sparse logical array of cluster
membership specifications:

cluster list ¼
a11 � � � a1n

..

. . .
. ..

.

ak1 � � � akn

2
664

3
775;

akn ¼
1 if spin n is in cluster k

0 otherwise

�
ð6Þ

While other ways, of course, exist to store the cluster mem-
bership list (for example, simply specifying the spin num-
bers), the form given in Eq. (6) is preferable because use
can be made in subsequent stages of Matlab’s formidable
logical and matrix indexing capabilities. The static dimen-
sionality of the cluster list as given in Eq. (6) also permits
straightforward implementation of adaptive clustering.

In the case when dipolar interactions are averaged to
first order, the interaction graph is usually very sparse.
When dipolar interactions are present in the static Hamil-
tonian, the non-zero band of the graph is broader, but
the connectivity is still significantly sparser than ‘‘every-
thing to everything’’ assumed in the scaling estimate in
Eq. (1).
5.2. Local and global state list generation

Because each cluster is small enough for the full quan-
tum mechanical treatment to be performed, the local oper-
ator basis is generated in the usual way, using direct
products of propagator group generators and unit
operators:

ŜðkÞm ¼ �n
q¼1L̂q; L̂q ¼ Ê; r̂Z; r̂þ; r̂� . . . ð7Þ



...

cluster
expansion

operator
construction

cluster
recoupling...

Fig. 5. Schematic illustration of the restricted state-space treatment. The interaction graph is expanded in a complete set of connected subgraphs (spin

clusters) of the specified size, each cluster is treated quantum mechanically and the resulting Liouvillian superoperators are recoupled in such a way as to
preserve the group theoretical properties of the resulting propagators. For detailed description see text.
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Assuming the following indexing convention for the states
in the direct product (7)

clusterðkÞ:state listðmÞ ¼ sm1 � � � smn½ �;

smq ¼

0 if L̂q ¼ Ê

1 if L̂q ¼ r̂Z

2 if L̂q ¼ r̂þ
3 if L̂q ¼ r̂�
� � �

8>>>>>><
>>>>>>:

ð8Þ

(higher numbers will be required for spin quantum num-
bers larger than 1/2), the generation of a complete cluster
state list is a simple combinatorial procedure involving
the permutations of integers and zeros. Again, the sparse
matrix indexing is preferred to direct enumeration for rea-
sons of computational convenience and speed.

The global state list is obtained by vertical concatena-
tion of the cluster state lists and elimination of repetitions.
The resulting global state list does not contain any spin
orders higher than the biggest cluster size and is consistent
with the interaction topology of the system: there would be
no cross-cluster entanglements unless several clusters con-
tain the same subset of spins.
5.3. State-cluster cross-membership matrix generation

The recoupling stage described in the next section criti-
cally depends on efficient cluster and state indexing. For
every cluster the local state list must be available, and for
every state the list of all hosting clusters. The most conve-
nient form of this index is the cross-membership matrix
stored as a binary sparse array:

xmmði;jÞ ¼
1 if state ðiÞ 2 cluster ðjÞ
0 otherwise

�
ð9Þ

Computing this array can potentially be an expensive pro-
cedure, because the length of both the cluster list and the
state list may be significant. We suggest a simple hashing
procedure here, based on the fact that the sum of elements
along the n index in the state specification (Eq. (8)) would
not change under element-by-element multiplication by the
hosting cluster specification line (Eq. (6)), but will be
reduced in the case of a non-hosting cluster. By construction,
this procedure utilizes fast binary and integer arithmetic and
avoids an element-by-element state list trawl.

5.4. Building local and global Liouvillians

The clustering procedure described above is only used to
generate the new state space—the spin system itself must,
of course, be simulated as a whole. This section describes
the ‘recoupling’ stage—generation of a single global Liou-
villian from Liouvillians of individual clusters. This is the
most important step in the algorithm, and the one that
was not available in prior work on hierarchical coupling
analysis [40].

Inside every cluster Cl the Hamiltonian Ĥ Cl and Liouvil-
lian ^̂LCl matrices for the overall evolution and the evolution
under any RF pulses are computed exactly:

ĤCl ¼
X
n2Cl

~̂Sngn
~Bþ

X
n;m2Cl

~̂SnAnm
~̂Sm þ � � �

^̂LCl ¼ Ĥ Cl � Ê � Ê � ĤT
Cl

ð10Þ

Importantly, the Liouvillian element linking two states
Ŝ1 and Ŝ2 is the same in every cluster that hosts both
Ŝ1 and Ŝ2:

Ŝ1; Ŝ2 2 Cl1;Cl2 ) hŜ1j^̂LCl1
jŜ2i ¼ hŜ1j^̂LCl2

jŜ2i ð11Þ
This is the consequence of the fact that if the two states are
in a cluster, then their constituent spins are also in that
cluster, meaning that the entire section of the Hamiltonian
representing all interactions within that group of spins will
also be there (Eq. (10)). The Hamiltonian and Liouvillian
matrix elements describing those interactions will therefore
be exact and therefore the same in every cluster.

With Eq. (11) in place, the global state-restricted Liou-
villian is generated from cluster Liouvillians by the proce-
dure that is best described as matrix blending. If a pair of
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states (i, j) has no cluster in common, zero is written; if they
do share a cluster, then the corresponding element is
fetched from the Liouvillian matrix of that cluster:

Lij ¼
[
Cl

0 if Ŝi 62 Cl _ Ŝj 62 Cl

LðClÞ
mk if Ŝi 2 Cl ^ Ŝj 2 Cl

(
ð12Þ

This is a critical step, which accomplishes seamless re-cou-
pling of clusters for subsequent simulation of the spin
system as a whole in the restricted state space. The union
over clusters in Equation is applied in the following sense:
the elements of the Liouvillian operator of every cluster in
turn are re-indexed (states Ŝi and Ŝj on the global list are
states Ŝm and Ŝk inside the cluster Cl) and assigned to the
elements of the global Liouvillian. The non-zero elements
are the same in every hosting cluster (Eq. (11)) and there-
fore do not change even if reassigned multiple times.

The computational complexity of every step in the pro-
cedure described above scales linearly with the number of
clusters in the system. The resulting restricted state space
and the set of global Liouvillians (for overall propagation
and, perhaps, for pulses) are mutually correct in the sense
of Eq. (4). Furthermore, because the manipulations had
been performed at the Lie algebra level, the group property
of the propagators (Eq. (2)) is also preserved, and the prop-
agator group orbit of the initial state is correctly confined,
without leakage, to a reduced state space, which is based on
the actual interaction topology in the system.
3 Technically speaking, Taylor series is a special case of the scaling and
squaring technique (S&S uses Padé approximants [41]). The memory
problem might therefore be specific to Matlab’s expm, and an appropri-
ately modified S&S technique may be faster than Taylor series.
6. Propagator construction and system propagation

The generation of theoretical magnetic resonance spec-
tra requires either Hamiltonian diagonalization followed
by the application of Fermi’s golden rule, or numerical
propagation of the density matrix followed by a trace oper-
ation and Fourier transformation [23]. The diagonalization
procedure works well for small systems, but becomes
impractical when the matrix dimensions exceed 104 because
the eigenvector matrices are usually dense. For large spin
systems, which are the subject of this paper, we are there-
fore confined to numerical propagation. Furthermore, the
restricted state-space approximation is essentially a Liou-
ville-space technique: once the space is set up, the operators
no longer have the Ĥ � Ê � Ê � Ĥ T form and cannot be
projected back into Hilbert space. Nor is Hilbert space
operation desirable, because it would neglect many relaxa-
tion pathways. We therefore need to set up numerical prop-
agation in Liouville space, which is actually quite
manageable now that its dimension has been reduced.

For 200+ spin systems even the restricted state-space
dimension is large enough to make the direct calculation

of the propagator expði^̂LDtÞ problematic: the standard scal-
ing and squaring (S&S) technique (in the shape of Matlab’s
expm function) [41] overflows 4 GB of RAM around
n = 50. The alternative option of using the Krylov space

technique [42] to compute expði^̂LDtÞq̂ðtÞ directly from
^̂L and q̂ðtÞ requires less memory but is much slower,
because it has to be applied at every step. The situation
might have been quite difficult, if it were not for another
convenient property of restricted state spaces.

A remarkable feature of a state-restricted Liouvillian is
its narrow eigenvalue spectrum: jkj < k max

n
fxng, where k

is the maximum cluster size and xn are Zeeman frequen-
cies. This would compare with jkj 6

P
njxnj in the exact

case. This means that the maximum eigenvalue of i^̂LDt
for a sub-Larmor time step Dt would be jkmaxDtj 6 pk,
where k is a small integer. That in turn means that the

power series for expði^̂LDtÞ will converge very rapidly.
Because of this narrow eigenvalue range and the fact that
the restricted Liouvillian is still very sparse (Table 1), in
practical calculations the straightforward Taylor expansion
is faster than Krylov and S&S3 techniques by several orders
of magnitude, permitting the calculation of exponentials
for restricted state-space dimensions in excess of N = 105.
The Krylov space technique may still be preferable in the
cases where the number of time steps is smaller than the
state-space dimension (i.e. in most 1D simulations). When
the opposite is the case (most 2D and 3D experiment sim-
ulations), it is reasonable to pre-compute the propagators.

The computational scaling of the propagator calculation
and system propagation will depend on the density of the
matrices involved and vary between quadratic (with dense
matrices) and linear (with diagonal and near-diagonal
sparse matrices). Table 1 shows that, for a system in
Fig. 3c, both the Liouvillian and the propagator are very
sparse indeed, with the share of non-zeros well under 1%
and decreasing with the spin system size. Direct inspection
also reveals that the non-zeros are clustered along the diag-
onal. With linear belts of J-couplings (e.g. for proteins in
the liquid phase) we should therefore expect the asymptotic
scaling to be linear.

7. Parametric gradient and Hessian

An important application of a technique for simulating
systems containing hundreds of spins would be direct
fitting of macromolecular structures to experimental data
(bypassing or improving upon the currently ubiquitous
molecular dynamics stage [43,44]). Efficient minimizers
require a gradient and (ideally) a Hessian of the simulation
with respect to the simulation parameters [45]. While both
can be obtained by finite difference calculations, such
estimates are usually computationally inefficient. We will
now demonstrate that the analytical gradient and Hessian
of the simulation may be computed directly within the
restricted state-space formalism.

Taking derivatives of the Liouville–von Neumann equa-
tion with respect to the Hamiltonian parameters, we obtain:



Fig. 6. An example of parametric spectrum derivatives computed for the
1D spectrum of a strongly coupled two-spin system using Eq. (16).
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where q0J denotes a directional derivative of the density
matrix along the interaction parameter vector J. Note also
that ^̂L00JK ¼ 0. Eq. (13) can be solved analytically:

q̂0J ðtÞ ¼
Z t

0

ei^̂Lðt0�tÞi^̂L0J e�i^̂Lðt0�tÞ dt
� �

q̂ðtÞ

q̂00JKðtÞ ¼ �
Z t
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dt0
Z t0

0
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" #
q̂ðtÞ

ð14Þ
Although Eqs. (14) do formally provide closed expressions
for density matrix derivatives, the parametric differentia-
tion operators in square brackets are very expensive to
compute. Under special circumstances, namely if the deriv-
ative direction vector J is chosen in such a way as to ensure
that ½^̂L0J ;

^̂L� ¼ 0, Eq. (14) do simplify into

q̂0J ðtÞ ¼ i^̂L0J tq̂ðtÞ

q̂00JKðtÞ ¼ �ð
^̂L0J

^̂L0K þ
^̂L0K

^̂L0JÞ
t2

2
q̂ðtÞ

ð15Þ

In that case, given a sufficiently large set of linearly inde-
pendent parameter vectors along which the derivatives in
Eq. (15) are taken, the gradient and the Hessian of the sim-
ulation may be recovered by a linear transformation. It is
far from clear, however, whether the required parameter
space directions exist in sufficient numbers.

A less computationally expensive avenue to the same
goal would make use of the way that the density matrix
is propagated in a state-restricted simulation:

q̂ðtþ DtÞ ¼ expf�i^̂LDtgq̂ðtÞ; q̂ð0Þ ¼ q̂0

q̂0J ðtþ DtÞ ¼ o

oJ
ðexpf�i^̂LDtgÞq̂ðtÞ

þ expf�i^̂LDtgq̂0J ðtÞ; q̂0J ð0Þ ¼ 0

q̂00JKðtþ DtÞ ¼ o2

oJoK
ðexpf�i^̂LDtgÞq̂ðtÞ

þ o

oJ
ðexpf�i^̂LDtgÞq̂0KðtÞ

þ o

oK
ðexpf�i^̂LDtgÞq̂0J ðtÞ

þ expf�i^̂LDtgq̂00JKðtÞ; q̂00JKð0Þ ¼ 0

ð16Þ

In the propagation equation for the derivative density ma-
trix the second term is known completely (the propagator
was computed in the main problem and q̂0J ðtÞ comes from
the previous step of the derivative problem) and in the first
term q̂ðtÞ is known from the main problem. The only un-
known term is therefore the propagator derivative, and it
is easily computed using the property we noted in the pre-
vious section about the eigenvalue spectrum of i^̂LDt and the
fast convergence of the exponential series for the propaga-
tor. By the same argument, the Taylor expansions for the
propagator derivatives:
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oJ
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n¼0

ð�iDtÞn

n!

Xn
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Xn�k

m¼1

^̂Lk�1^̂L0J
^̂Lm�1^̂L0K

^̂Ln�k�m

!
ð17Þ

are going to converge very rapidly. Efficient computation
of first derivatives in Eq. (17) is made possible by the fact

that all the relevant powers of i^̂LDt were obtained when

the main propagator was computed and the fact that ^̂L0J
would in general have only a handful of non-zeroes. The
second derivative is, of course, significantly more expen-
sive, but in practical situations the exact second derivatives
are rarely necessary as a Hessian of sufficient quality can be
generated and updated by the many varieties of the BFGS
formula [46].

The relative ease with which the gradient and Hessian of
the simulation can be obtained owes much to the fast con-
vergence of the Taylor series expansion for the propagator
and its derivatives. This would not be the case outside the
restricted state space, since the high coherences present in
the full state space would lead to the emergence of large
eigenvalues in i^̂LDt and therefore convergence problems.

With Eqs. (16) and (17) implemented efficiently, the
parametric derivatives of the density matrix may be
co-propagated alongside the main simulation (an example
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is given in Fig. 6). The computational expense of calculat-
ing simulation derivatives with respect to k parameters is
smaller than k times the main simulation, because the inter-
mediate results (e.g. Liouvillian powers and the main prop-
agator) are re-used between the main and the derivative
simulation. With compound pulse sequences, so long as
the pulses are hard, no special care needs to be taken,
because hard pulse propagator derivatives with respect to
system parameters are zero. The propagators of soft pulses
need to be differentiated in the way described above.

8. Relaxation and chemical kinetics

The cluster expansion described above was based on the
topology of coherent couplings. A significant chunk of the
relaxation superoperator (e.g. Zeeman tensor anisotropy,
intra-cluster dipole and quadrupole interactions and their
cross-correlations) will be accounted for by the relaxation
superoperator obtained in the same way as was done for
the global Liouvillian: by blending the cluster relaxation
superoperators, which can be obtained exactly. However,
there will be contributions beyond these, due to inter-clus-
ter relaxation processes and chemical kinetics.

The inter-cluster relaxation processes of practical impor-
tance are dipolar cross-relaxation and DD-CSA (dipole
anisotropy to chemical shift anisotropy) cross-correlation.
While these processes would, in general, be non-secular
between all longitudinal spin orders in the system, in
practice they can be adequately described by including
only the ÎZ $ ŜZ and ÎZ $ 2ÎZŜZ processes [47], that is,
low spin orders are again sufficient. These relaxation pro-
cesses would be accounted for if extra clusters are added
for the cross-relaxing spins. The same procedure will also
account for coherence transfer as a result of chemical
transformations.

9. Conclusions and outlook

We propose a polynomially scaling algorithm for spin
dynamics simulation and have illustrated its performance
with NMR simulations of systems containing hundreds
of coupled spins. The approximation involves restricting
the state space to low spin-orders linking nearby spins
and takes care to observe a number of restrictions imposed
by the algebraic nature of the propagator group. A some-
what surprising find is that most spin states in large spin
systems are not essential in magnetic resonance simulations
and can safely be dropped from the state space. In cases of
favourable interaction topologies (sparse graphs, e.g. in
protein NMR) the asymptotic scaling of the simulation
complexity is linear, opening the way to direct fitting of
molecular structure to the experimental spectra.

We have identified the following issues as open for
exploration. Firstly, the computational efficiency of the
clustering algorithm depends on the coupling graph being
sparse. This raises a question of what gains, if any, can
be obtained in the cases where the coupling graph does
not have this property, e.g. in solid state NMR and in
EPR spectroscopy. Another important question is why,
even though the state-space dimension has been reduced
dramatically, the propagators are still sparse and whether
there might be a possibility of further reducing the dimen-
sion of the system orbit (which is actually one-dimensional
itself), perhaps through basis set transformation. The third
open question is that of cluster isomorphism: there is just
one type of 2-cluster, two types of 3-clusters etc, which
can be pre-computed (or even pre-compiled) as building
blocks, removing the need for intra-cluster treatment every
time the simulation is run. Finally, the natural application
of the algorithm described in this paper would be the (hith-
erto impossible) direct fitting of structural models to exper-
imental spectra, possibly improving upon the molecular
dynamics stage that is currently ubiquitous in NMR struc-
ture determination.
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