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A numerical procedure is presented for mapping the vicinity of the null-space of the spin relaxation
superoperator. The states populating this space, i.e. those with near-zero eigenvalues, of which the
two-spin singlet is a well-studied example, are long-lived compared to the conventional T1 and T2

spin-relaxation times. The analysis of larger spin systems described herein reveals the presence of a sig-
nificant number of other slowly relaxing states. A study of coupling topologies for n-spin systems
(4 6 n 6 8) suggests the symmetry requirements for maximising the number of long-lived states.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

An ability to tame spin relaxation by finding the rare states that
resist the gradual drift towards thermal equilibrium [1–3] is of con-
siderable interest in magnetic resonance. The slowly relaxing states
may be used to store polarisation [4–7], measure slow diffusion [8],
and obtain information on molecular structure [9]. Such super-
stable states were recently found to exist in dipolar-coupled spin
systems [1] and have since attracted much theoretical [7,10–12]
and experimental [2,7,8,11] attention. Their common property – a
zero dipolar relaxation rate – can be formulated as defining the null
space of the relaxation superoperator to which their associated
eigenvectors belong. More generally, we are interested in finding
those eigenstates of the full relaxation superoperator that have
small (but not necessarily zero) eigenvalues. Analytical treatments
are possible for small systems [3,10–12], but collections of more
than four spins have not hitherto been studied systematically.

Drawing on our recent work on large-scale spin dynamics sim-
ulations [13–15] and construction of relaxation superoperators
[16] for large spin systems, we report here a systematic mapping
of the dipolar relaxation null spaces for systems with four to eight
spins using the Spinach software library [17]. Investigation of dif-
ferent spin-½ coupling topologies evinces clear symmetry and cou-
pling requirements for maximising the number of long-lived
states.

The null-space analysis follows a simple procedure: build the
Liouvillian and find the eigenvectors corresponding to zero or
ll rights reserved.
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near-zero eigenvalues [12,18]. Different dipolar coupling topolo-
gies comprising at least four spins are predicted to have more than
one non-trivial (i.e. other than the identity operator) long-lived
state when certain symmetry requirements are met. These criteria
are illustrated with three examples of commercially available mol-
ecules expected to exhibit multiple long-lived states in liquid state
NMR experiments.
2. Theoretical formalism

In order to be long-lived, a state q̂ or a subspace of states
K ¼ spanfq̂1; . . . ; q̂kgmust be invariant with respect to time evolu-
tion under the system Liouvillian ^̂L:

exp �i^̂Lt
� �

q̂ ¼ q̂)
X1
n¼0

ð�itÞn

n!
^̂Ln

 !
q̂ ¼ q̂)
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^̂Lnq̂ ¼ 0 8t 2 ½0;1Þ;

ð1Þ

where ^̂L ¼ ^̂H þ i^̂R, ^̂H is the Hamiltonian commutation superoperator

and ^̂R is the relaxation superoperator. This invariance is only possi-
ble (as a consequence of the Taylor expansion uniqueness theorem)
if q̂ or K belongs to the null space of the Liouvillian:

^̂Lq̂ ¼ 0 ^̂L : K ! f0g ð2Þ

The general task of finding long-lived states in a particular sys-
tem therefore amounts to finding the null space of the system
Liouvillian. Control of the coherent part of the Liouvillian (con-

tained in ^̂H) is well developed: field-shuttling, spin-locking and
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Fig. 1. Dipolar coupled spin-systems grouped according to null-space size. Nodes
represent spin positions and solid lines a separation of 1 Å (D � 120 kHz).
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decoupling can be used to halt the evolution of states of interest
under the influence of chemical shift differences or external J-cou-
plings [11,12,19]. There remains the part of the Liouvillian that we
cannot normally control – the incoherent relaxation processes –
which has yet to be fully exploited from a practical perspective.
Accordingly, we shall focus our attention on the relaxation super-
operator and look for states that are immune to it. The most
general formulation of spin-relaxation theory for spin systems
with a one-way coupling to a classical heat bath is [20,21]:

r̂ðt þ DtÞ ¼ r̂ðtÞ þ
X1
n¼1

ð�iÞn
Z Dt

0
dt1

Z t1

0
dt2 . . .

"
Z tn�1

0
dtnh ^̂HR

1ðt1Þ ^̂HR
1ðt2Þ . . .

^̂HR
1ðtnÞi

#
r̂ðtÞ ð3Þ

where hi denotes ensemble average, r̂ðtÞ is the ensemble average

density matrix and ^̂HR
1ðtÞ is the stochastic part of the Liouvillian

commutation superoperator, both written in the interaction repre-
sentation with respect to the coherent Liouvillian. Truncation of this
series at the second order with some additional assumptions is
known in magnetic resonance as Bloch–Redfield–Wangsness relax-
ation theory [22,23]. As most semi-classical theories do, this formal-
ism relaxes the system to the infinite temperature state. This is
easily fixed [24], but the relaxation destination is unimportant for
the present treatment – we only seek to determine whether a par-
ticular state is going (or not going) to relax at all.

It is clear from Eq. (3) that a sufficient condition for a state to be
immune to propagation under the relaxation superoperator is
belonging to the null space of the stochastic Hamiltonian commu-
tation superoperator at all times:

^̂HR
1ðtÞr̂ ¼ 0 ) ei ^̂H0t ^̂H1ðtÞe�i ^̂H0tei ^̂H0tq̂ ¼ 0 ) ^̂H1ðtÞq̂ ¼ 0:

ð4Þ

Whether or not this is also a necessary condition, we do not
know – this seems unlikely, because terms could in principle can-
cel or vanish under the average in Eq. (3). This explains why singlet
states are immune to dipolar relaxation (the singlet density matrix
commutes with the dipolar Hamiltonian involving the two spins in
question and with any operator that does not affect those spins)
and provides a rapid test for the long-lived character of a state of
interest. In particular any state from which all transitions under
^̂H1ðtÞ are permutation-symmetry-forbidden is going to be long-
lived. However, all of the long-lived states (including those where
the eigenvalue is very small but non-zero) can only be discovered
with certainty by mapping the null-space of the full relaxation
superoperator in square brackets in Eq. (3).

Before embarking on larger systems, we shall briefly review the
classic two-spin case [1]. For a dipolar-coupled pair of spins-½ the
null space of the relaxation superoperator is spanned by two states.
If only dipolar relaxation is considered, the eigenvalues are exactly
zero and the states persist indefinitely. Any linearly independent
pair of states (they do not have to be orthogonal) may be chosen
as the basis of this two-dimensional null space, for example:

1̂ ¼ P̂Tþ þ P̂T0 þ P̂T� þ P̂S and P̂TS ¼ P̂Tþ þ P̂T0 þ P̂T� � P̂S ð5Þ

where fP̂S; P̂Tþ ; P̂T0 ; P̂T�g are projectors into the singlet and the three
triplet states. The identity operator 1̂ is not interesting because it
commutes with any Hamiltonian and will hereafter be omitted
from the discussion. The P̂TS state is the difference between the sin-
glet state, P̂S, and the sum of the three triplet states. Any linear com-
bination of these states is also in the null space and is thus also
long-lived. A particularly convenient (on symmetry grounds) linear
combination, known as ‘‘the’’ singlet state may be written in the
usual ab basis set as:
P̂S ¼
1
2

abj i � baj ið Þð abh j � bah jÞ; ð6Þ

corresponding to a projector into the two-spin zero-quantum
coherence. For convenience, the normalisation factors will hence-
forth be omitted.

The magnetic dipolar interaction operator, which often domi-
nates relaxation in liquid-state NMR, is bilinear in the spin
operators:

ĤD ¼ DðrÞ 3ðŜ1 � u12ÞðŜ2 � u12Þ � ðŜ1 � Ŝ2Þ
h i

ð7Þ

with DðrÞ ¼ �l0�hc1c2=4pr3
12. Ŝi is a vector of the spin operators,

fŜx; Ŝy; Ŝzg, r12 is the distance between the spins and u12 is unit vec-
tor along the spin–spin direction. In large spin systems, because
products and linear combinations of two-spin singlets are invariant
under sums of dipolar operators, we would expect some of the long-
lived states to be products and linear combinations of products of
two-spin singlets.

Our large-scale implementation of liquid-state Bloch–Redfield–
Wangsness relaxation theory is described in detail elsewhere [16];
it includes all cross-correlations and non-secular terms as well as
(optionally) dynamic frequency shifts. The isotropic rotational dif-
fusion approximation is used in this paper, but the Spinach library
[17] can handle arbitrary user-specified correlation functions. If
chemical shielding anisotropy (CSA) is present, it is also included
because singlet states are not immune to CSA and DD-CSA pro-
cesses [1,19].

In the simulations presented below the dipolar interactions
were calculated directly from user-specified coordinates (model
systems) and crystal structure geometries (real molecules). CSA
tensors and scalar couplings were estimated using the DFT GIAO
B3LYP/EPR-II method in Gaussian03 [25]. All interaction tensors
were then fed into the relaxation theory module of the Spinach li-
brary [17], the resulting relaxation superoperator was diagonalised
and the eigenvectors corresponding to small eigenvalues were in-
spected. An example of MATLAB code calling the Spinach library for
this purpose can be found in Supplementary information along
with the console output that lists all the interaction parameters.
3. Results and discussion

A systematic search to find long-lived states by mapping the
null space of the full relaxation superoperator has been performed
on dipolar coupled systems with three to eight spin-½ nuclei. A
range of system symmetries and coupling patterns was investi-
gated; the results are summarised in Fig. 1 in which coupling
topologies are grouped according to the number of long-lived
states found in them. A nearest neighbour separation of 1 Å was
chosen (to give a dipolar coupling of D � 120 kHz); being just



Fig. 3. Molecules expected to show long lived states.

Table 1
Ten smallest eigenvalues (in s�1) for dipolar relaxation only, dipolar and CSA
relaxation and the full coherent Liouvillian for three example molecules, numbering
as in Fig. 3, in a 1.0 T magnetic field. The identically zero eigenvalue always belongs to
the identity operator. All simulation parameters for these systems are given in
Supplementary information. The magnetic properties were calculated using Gauss-
ian03 [25] using literature crystal structures [28–30].

Molecule Dipolar
relaxation

Dipolar and CSA
relaxation

Total
Liouvillian

1 0 0 0
0.0000 0.0009 0.0684
0.0015 0.0024 0.1271
0.0038 0.0046 0.7623
0.0057 0.0064 2.3863
0.0057 0.0065 2.8843
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shorter than a 13C–1H bond length this provides an upper bound on
the dipolar interactions likely to be encountered in organic mole-
cules. All pair-wise dipolar interactions were included in the relax-
ation superoperator with coupling constants and dipolar axes
calculated from the geometry of the spin system.

For a dipolar coupled three-spin-system only the linear geome-
try returns a long-lived state as was shown analytically in Ref. [26].
For larger systems it appears that only the topologies that have a
centre of inversion show any long-lived states at all. This is to be
expected for the dipolar relaxation superoperator, which inherits
the symmetry of Eq. (7) with respect to the permutation of the
two spins. The long-lived states are not formed from combinations
of singlets across the most strongly coupled pairs, i.e. those with
minimum separation, but instead from the symmetric combina-
tions of products of singlets across the spins interchanged by the
inversion symmetry. For example, the square D4h four-spin system
yields a non-trivial null-space state:

4P̂f1;3gS P̂f2;4gS � 1 ð8Þ

(the numbering is shown in Fig 1). Because all linear combinations
of eigenvectors with small eigenvalues do themselves have small
eigenvalues, it is possible to take an alternative linear combination
of the state in Eq. (8) with its identity operator partner to yield the
more intuitively recognisable P̂f1;3gS P̂f2;4gS . This demonstrates the
localised singlet character of the inversion-related spins, i.e. of
those across the diagonal of the square which experience the weak-
er of the two dipolar coupling amplitudes in the system. The same
state, with its triplet mixture counterpart, also forms a part of the
null space of the linear four-spin system (Fig. 1), along with two fur-
ther mixed states. An isolated singlet state across any pair of spins
in that system does not appear anywhere in the null space and thus
would not exhibit slow relaxation. This may be confirmed by substi-
tution of the requisite states into Eq. (4) which fails to return the all-
zero vector indicative of long-lived character.

Multi-spin systems are known to have a long-lived state when a
localised singlet interacts only weakly with neighbouring spins [3].
Coupling topologies combining strong (D � 120 kHz) and weak
(D � 120 Hz) interactions were therefore investigated with the re-
sults shown in Fig. 2 and Supplementary information Table SI.

Four-spin systems, of C1 and D2h symmetry, have been observed
experimentally to display a long-lived state [27]. The nature of the
observed state was proposed to be a singlet localised on one of the
two pairs of strongly coupled spins stabilised by the J-coupling
within the pair [18]. The results from our analysis, shown in
Fig. 2. Multi-spin systems with both strong (D � 120 kHz, solid lines) and weak
(D � 120 Hz, dashed lines) dipolar couplings, grouped according to null-space size,
n. When n < 10 the constituent states of each group which derive from singlet–
states, P̂fi;jgS , across pairs of spins {i, j} are given. Nodes represent spin positions. All
pair-wise dipolar interactions were included.
Fig. 2, demonstrate that this is certainly possible but that a more
complicated product of singlets may also be responsible for the
long lifetime observed. The states in addition to the isolated sing-
lets are either products of the strongly dipolar-coupled singlets or
symmetric linear combinations across all pair-wise singlet permu-
tations. The number of long-lived states available is maximised
when sets of strongly coupled pairs are related by centres of inver-
sion, more precisely by an inversion with respect to the midpoint
of the pairs, not necessarily the centre of inversion of the whole
system. The state vectors are linear combinations or products of
localised singlets across all pairs of symmetry related spins, even
if they have only a weak dipolar coupling. As the interactions be-
tween sets of strongly coupled pairs increases the long-lived states
are increasingly perturbed and the non-symmetric linear combina-
tions mix so as to increase the eigenvalues of the relaxation matrix,
reducing the long-lived states to those shown in Fig. 1.

Having established the symmetry and coupling pattern require-
ments for the presence of multiple long-lived states, we have
investigated three apparently suitable molecules, Fig. 3. They were
chosen primarily for the symmetry of their dipolar coupling net-
works but also for their relatively small CSA. The eigenvalues of
0.0087 0.0093 3.4775
1.8800 1.8694 3.9168
1.8800 1.8695 3.9168
1.8800 1.8810 5.6113

2 0 0 0
0.0000 0.0000 0.0000
0.0001 0.0003 0.0643
0.0003 0.0003 0.0644
0.0004 0.0004 0.1581
0.0004 0.0004 0.2967
0.0006 0.0006 0.2988
0.1710 0.1683 0.3294
0.1710 0.1683 0.3778
0.1710 0.1690 0.4549

3 0 0 0
0.0000 0.0000 0.0000
0.0033 0.0032 0.0648
0.0038 0.0038 0.0946
0.0085 0.0085 0.1612
0.0085 0.0085 0.3264
0.0088 0.0088 0.3382
0.1644 0.1666 0.3904
0.1644 0.1666 0.4158
0.1669 0.1669 0.5289
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the system Liouvillian were calculated for three cases: dipolar
relaxation superoperator only, full relaxation superoperator
(including CSA) only, and finally the total Liouvillian that includes
also the coherent evolution for the molecule in a moderate (1 Te-
sla) static field. Table 1 shows the 10 smallest amplitude eigen-
values in each instance; long-lived states are defined as those
that have eigenvalues more than an order of magnitude smaller
than the majority.

Each molecule reveals six non-trivial long-lived states, that is,
six states that would resist relaxation if coherent evolution is sup-
pressed. In the presence of unsuppressed coherent evolution, bicy-
clopropylidene-d4 (1) naphthalenetetrone (2) and p-benzoquinone
(3) all have only one extremely long-lived state, which has an
eigenvalue seven orders of magnitude smaller than the average.
Reducing the field strength, or using other methods to limit coher-
ent evolution, moves the eigenvalues towards the relaxation-only
limit, that is, the six usable states identified in Fig 2. Molecules
with more sets of inversion-related dipolar coupled pairs should
exhibit even more long-lived states.

4. Conclusion

We have presented a method with which to determine the
number and identity of the states in multi-spin systems that are
immune or insensitive to dipolar relaxation. Using this procedure
we have identified some general requirements to maximise the
number of long-lived states. Firstly, for a strongly coupled spin sys-
tem to exhibit long-lived states, some spin pairs must be related by
an inversion symmetry. Multiple pairs of strongly dipolar-coupled
spins with only weak inter-pair interactions lead to many long-
lived states when there are ‘pairs of pairs’ related to each other
by a centre of inversion. We have identified large slowly relaxing
subspaces in several commercially available molecules. Their exis-
tence provides scope for using these and other such molecules as
hyperpolarising agents in magnetic resonance experiments.
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Supplementary data associated with this article can be found, in
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