
Introduction to Mathematica patterns

Patterns are used to represent classes of expressions. For example, f[_] stands for any
expression of the form f[anything]. Pattern f[x_] also stands for f[anything], but it
gives name to the expression anything and allows to refer to it on the right-hand side of
the transformation rule. For example:

A given pattern will match all expressions that can be obtained by filling in the named
and unnamed blanks in any way.

Introduction to Mathematica patterns

Importantly, patterns represent classes of expressions with a given structure. In other
words, while a pair of expressions may be mathematically equal, they might not match
the same pattern.

In all cases, the pattern matching in Mathematica is fundamentally structural rather
than algebraic. This must always be kept in mind when designing patterns.

Pattern Expression Match?
(1+x_)2 (1+a)2 Yes
(1+x_)2 1+2a+a2 No
x^_ x^2 Yes
x^_ 1 No

The internal representation of an expression may be obtained using the FullForm
command:

Introduction to Mathematica patterns

2
2
if x

i i

f
x

σ σ
 ∂

=  ∂ 
∑

Real-life example: the error propagation law, a fairly tedious procedure, may be packed
in full generality into one line of pattern-matching syntax.

Real-life example: Clebsch-Gordan expansions of products of spherical harmonics may
be programmed in full generality with just two patterns (see Tutorial 1 for the details of
those patterns).

Typical processing time: milliseconds… :)

()

()
2,0

2

,

1 5 3cos 1
4

Y θ ϕ

θ
π

=

−

Conditional patterns

Certain patterns should only be applied if certain conditions are met (e.g. a term can be
taken out of integral only if it contains no integration variable). Mathematica provides a
general way of putting conditions on patterns:

An example of a conditional pattern for the complex conjugation operation:

Another example from the linearity definition of an integration operator:

The ‘/;’ symbol can be interpreted as ‘whenever’. Conditions should be applied to the
smallest possible parts of expressions – the sooner Mathematica encounters a violation,
the sooner it can stop processing a given pattern.

More advanced patterns

Double blanks stand for sequences of one or more expressions. Triple blanks stand for
sequences of zero or more expressions.

Extending the linearity and threading of conjugation over an arbitrary number of
arguments (will be used in BRW processor):

Times and Plus operations return a sum or a product of elements in the list, so the rules
above will operate repeatedly until the list of terms in the sum or product is exhausted.

Some frequently encountered patterns

Typical patterns for algebraic expressions:

Typical patterns for lists:

General notes

• Mathematica kernel has complete memory of past commands, which is retained
between the worksheets. Restart the kernel (Menu > Evaluation > Quit Kernel > Local)
to make it forget what you told it before.

• Floating point numbers disable many analytical ransformation routines in
Mathematica. Always use analytical expressions (e.g. 1/2 instead of 0.5).

• A spacebar symbol is interpreted as multiplication. That can be a source of much
frustration, so be careful. Never put a space anywhere unless you mean to multiply.

• Argument brackets are [rectangular], priority brackets are (round) and list
brackets are {curly}.

The practical tutorial worksheets (~45 min and ~120 min respectively) on pattern-
matching and its applications to relaxation theory can be downloaded from here:

http://spindynamics.org
Enjoy! :)

http://www.kuprov.com/acert/tutorial_1.nb�

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

