Deer 4p soft diag.m

From Spinach Documentation Wiki
Jump to: navigation, search

Complete set of simulations related to three-pulse DEER. Runs echo diagnostocs followed by DEER simulation. Syntax:



     parameters.pulse_frq  - frequencies for the 
                             four pulses, Hz
     parameters.pulse_pwr  - power levels for the four
                             pulses, Hz
     parameters.pulse_dur  - durations for the four
                             pulses, seconds
     parameters.pulse_phi  - initial phases for the four 
                             pulses, radians
     parameters.pulse_rnk  - Fokker-Planck ranks for the
                             four pulses
     parameters.p1_p2_gap  - time between the end of the 
                             first and the start of the
                             second pulse, seconds
     parameters.p2_p4_gap  - time between the end of the 
                             second the start of the third
                             pulse, seconds
     parameters.p3_nsteps  - number of third pulse posi-
                             tions in the interval between
                             the first echo and the fourth
     parameters.echo_time  - time to sample around the ex-
                             pected second echo position
     parameters.echo_npts  - number of points in the second
                             echo discretization
     parameters.rho0       - initial state
     parameters.coil       - detection state
     parameters.offset     - receiver offset for the time
                             domain detection, Hz
     parameters.sweep      - sweep width for time domain
                             detection, Hz
     parameters.npoints    - number of points in the free
                             induction decay 
     parameters.method     - soft puse propagation method,
                             'expv' for Krylov propagation,
                             'expm' for exponential propa-
                             gation, 'evolution' for Spin-
                             ach evolution function