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CHEM2024 - Week 19 Lecture 2 - Eigensystems 
Chapters 17 and 19 of Steiner, “The Chemistry Maths Book”, 2nd edition. 

1. Determinants 
Matrix determinant is an auxiliary function that often occurs in matrix algebra. It is defined in terms of 
products of matrix elements. For 2x2 and 3x3 matrices the expressions are: 

 det ,           det
a b c

a b
ad bc d e f aei bfg cdh ceg bdi afh

c d
g h i

 
   = − = + + − − −      

 

  (1) 

The following diagrams are useful for memorising the element multiplication order: 

                            
Determinants of larger matrices can be expressed via the determinants of their submatrices – see Sec-
tion 17.3 in Steiner. Determinants are useful as indicators of various matrix properties, which in this 
course will be given without formal proof: 

1. The inverse matrix exists only for matrices with a non-zero determinant. 

2. The equation 0x =A  can only have non-zero solutions if det 0=A . 

3. An orthogonal 3x3 matrix with a determinant of +1 is a rotation. If the determinant is –1, it is 
a rotation preceded or followed by a reflection. 

In physics, wavefunctions of fermionic systems are formulated in terms of determinants because the 
determinant changes sign when any pair of matrix rows or columns is swapped. This property happens 
to coincide with the particle permutation property imposed on fermions by Schrödinger’s equation. 

2. Eigenvalues, eigenvectors, and eigenfunctions 
Strings of musical instruments oscillate at specific frequencies, atoms and molecules have specific ener-
gy levels, bridges have specific resonances that must be avoided, and physical systems in general have 
patterns of behaviour and properties that are in some sense intrinsic to those systems. Such properties 
often correspond to what is called an eigensystem. 

In vector spaces, a non-zero vector v  is called an eigenvector of a square matrix A  and λ  is called the 
corresponding eigenvalue if v vλ=A 

.  

In function spaces, a non-zero function f  is called an eigenfunction of an operator Ô  and λ  is called 
the corresponding eigenvalue if Ô f fλ= . Examples: 

1. Complex exponentials are eigenfunctions of the derivative operator: 

 ( ) ( )ikx ikxe ik e
x
∂

=
∂

   

2. Sinusoidal oscillations are eigenfunctions of the acceleration operator: 

 ( ) ( )
2

2
2 sin sint t

t
ω ω ω∂

= −      ∂
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3. Z axis direction is an eigenvector of the matrix that performs rotations around Z: 

 

cos sin 0 0 0
sin cos 0 0 0

0 0 1 1 1

ϕ ϕ
ϕ ϕ

−    
    =    
    
    

   

4. Atomic orbitals (s, p, d, f, …) are eigenfunctions of the energy operator for the hydrogen atom – there 
will be a separate lecture on this later in this course. 

3. Eigensystems of matrices 
Given a matrix A , we can write the following equation for its eigenvalues and eigenvectors:  

 ( )                    0x x x x xλ λ λ= ⇒ = ⇒ − =A A 1 A 1    

  (2) 

As noted above, this matrix equation only has non-zero solutions if 

 ( )det 0λ− =A 1   (3) 

which is a polynomial equation for λ  with the number of solutions that is equal to the dimension of the 
matrix. Solutions of Equation (3) are eigenvalues { }kλ . For each eigenvalue, we can solve Equation (2) 
and obtain the corresponding eigenvectors. By convention, they are normalized.  

Example 1: find eigenvalues and eigenvectors of Xσ  Pauli matrix: 

 X

0 1 2
1 2 0

σ
 

=  
 

  

Solution:  

 1 1

2 2

0 1 2 0 1 2 1 0
          det 0

1 2 0 1 2 0 0 1
x x
x x

λ λ
         

= ⇒ − =         
          

  

Opening up the determinant yields a quadratic equation: 

 12

2

1 21 2 1det 0          0          
1 21 2 4

λλ
λ

λλ
= + −   

= ⇒ − = ⇒    = −−   
  

Solving Equation (2) (including the normalization condition) for the first eigenvalue: 

 
1 1 2 1 1

1 2
2 2 1 2 2 2

2 2 1 22 2
21 2 1 2

10 1 2 1 1 2 1 2
21 2 0 2       1 2 1 2             
11

1 1 2

x x x x xx x
x x x x

x x xx x x x

      = == =        ⇒ = ⇒ ⇒       
+ =   =+ = + =  

  

The system will always contain one redundant equation – this is a subtle consequence of forcing the de-
terminant to be zero in Equation (3). Doing the same for the second eigenvalue yields: 

 
1 1 2 1 1

1 2
2 2 1 2 2 2

2 2 1 22 2
21 2 1 2

10 1 2 1 1 2 1 2
21 2 0 2       1 2 1 2             
11

1 1 2

x x x x xx x
x x x x

x x xx x x x

      = − = += − = −        ⇒ = − ⇒ ⇒       
+ =   = −+ = + =  

  

The final answer is: 
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1 1 2 1

1 11 1 1 1,  ,      ,  
1 12 22 2

x xλ λ
      

= = = − =      −      

 

 

Note that eigenvectors are defined up to a constant multiplier: if v  is an eigenvector, then vα   is also 
an eigenvector with the same eigenvalue. 

The flowchart for the eigenvalue and eigenvector determination is:  

(a) solve Equation (3) for λ ;  

(b) for each value of λ , solve Equation (2) for x  with the condition that 1x =


;  

(c) test your answer using the definition x xλ=A 

. 

With some experience, it is sometimes possible to guess eigenvectors by just looking at the matrix. 

4. Eigensystems of quantum mechanical operators 
Operators in quantum mechanics are often combinations of differentiation and multiplication. They will 
all be derived in due course – for now we will simply take the expressions out of the QM textbooks. The 
procedure for finding eigenvalues and eigenfunctions of differential operators 

 Ô ψ λ ψ=   (4) 

simply amounts to solving the corresponding differential equations. Example ("particle in a box"): 

 ( ) ( )
( )
( )

2

2

0 01ˆ ˆ,      ,      
2 0

H x E x H
m x a

ψ
ψ ψ

ψ

=∂ = = − ∂ =
  

where E  is the energy of the particle (quantum mechanical energies are eigenvalues of certain opera-
tors called Hamiltonians), Ĥ  is the Hamiltonian operator and a  is the size of the box. After writing 
down the differential equation explicitly, we obtain: 

 
( ) ( ) ( ) ( )

2 2

2 2

1           2
2

x x
E x mE x

m x x
ψ ψ

ψ ψ
∂ ∂

− = ⇒ = −
∂ ∂

  

It is clear (we shall skip a lot of formal math here) that the solutions are sines and cosines. In general: 

 ( ) ( ) ( )cos 2 sin 2x mEx mExψ α β= +   

where α  and β  are arbitrary numbers. The solution must be zero at 0x = , meaning that 0α = . We 
are therefore left with: 

 ( ) ( )sin 2x mExψ β=   

which must also be zero at x a= , therefore: 

 ( )
2 2

2sin 2 0          2           ,     1, 2,3...
2n

nmEa mEa n E n
ma
πβ π= ⇒ = ⇒ = =   

where the solution with 0n =  has been discarded because it corresponds to there being no particle at 
all. After substituting the energy expression into the eigenfunction, we get: 

 ( ) sinn
nxx
a

πψ β  =  
 

  

The coefficient β  should be adjusted so that the function has a unit norm: 
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 2 2

0

2sin 1          
a

n n
nx dx
a a

πψ ψ β β = = ⇒ = 
 ∫   

And so the final answer is: 

 ( )
2 2

2

2,     sin ,      1, 2,3...
2n n

n nxE x n
ma a a
π πψ  = = = 

 
  

As expected for a differential operator, the number of eigenfunction-eigenvalue pairs is infinite. 
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