From Spinach Documentation Wiki
Revision as of 08:56, 25 August 2019 by Kuprov (talk | contribs) (Notes)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Emulates the effect of a gradient sandwich on the sample average density matrix using Edwards formalism. It is assumed that the effect of diffusion is negligible, that the gradients are linear, and that they are antisymmetric about the middle of the sample.




             rho   - spin system state vector

               L   - system Liouvillian

               P   - total propagator for all events happening
                     between the two gradients

          g_amps   - row vector containing the amplitudes of
                     the two gradients, Gauss/cm

           s_len   - sample length, cm

          g_durs   - row vector containing the durations of
                     the two gradients, seconds

          s_facs   - shape factors of the two gradients, use
                     [1 1] for square gradient pulses


     rho - spin system state vector, integrated over
           the spatial coordinate


See examples/fundamentals/gradient_test_2.m file for an example of using this function.


  1. WARNING This function integrates over the spatial coordinate after the gradient pulses are completed - subsequent gradient pulses would not refocus the magnetisation that this function removed because it is removed mathematically. If your experiment has multiple gradient pulses, you must model the spatially distributed spin dynamics explicitly using imaging.m context.
  2. More information on the subject is available in Luke's paper (

See also

grad_pulse.m, imaging.m

Version 2.2, authors: Luke Edwards, Ilya Kuprov